scholarly journals CRTR-1, a Developmentally Regulated Transcriptional Repressor Related to the CP2 Family of Transcription Factors

2000 ◽  
Vol 276 (5) ◽  
pp. 3324-3332 ◽  
Author(s):  
Stephen Rodda ◽  
Shiwani Sharma ◽  
Michaela Scherer ◽  
Gavin Chapman ◽  
Peter Rathjen
2013 ◽  
Vol 1 (6) ◽  
pp. 532-544 ◽  
Author(s):  
Amar M. Singh ◽  
James Chappell ◽  
Robert Trost ◽  
Li Lin ◽  
Tao Wang ◽  
...  

1996 ◽  
Vol 16 (9) ◽  
pp. 4862-4868 ◽  
Author(s):  
K N Chow ◽  
D C Dean

The retinoblastoma protein (Rb) is a tumor suppressor that regulates progression from the G1 phase to the S phase of the cell cycle. Previously, we found that Rb is a transcriptional repressor that is selectively targeted to promoters through an interaction with the E2F family of cell cycle transcription factors--when Rb is tethered to a promoter through E2F, it not only blocks E2F activity, it also binds surrounding transcription factors, preventing their interaction with the basal transcription complex, thus resulting in a dominant inhibitory effect on transcription of cell cycle genes. Here we examine the repressor motif of Rb. The two domains in the Rb pocket, A and B, which are conserved across species and in the Rb-related proteins p107 and p130, are both required for repressor activity. The nonconserved spacer separating A and B is not required. Although neither A nor B alone had any repressor activity, surprisingly, repressor activity was observed when the domains were coexpressed on separate proteins. Transfection assays suggest that one domain can recruit the other to the promoter to form a repressor motif that can both interact with E2F and have a dominant inhibitory effect on transcription. Using coimmunoprecipitation and in vitro binding assays, we show that A and B interact directly and that mutations which disrupt this interaction inhibit repressor activity. The Rb pocket was originally defined as the binding site for oncoproteins from DNA tumor viruses such as adenovirus E1a. We present evidence that E1a interacts with a site formed by the interaction of A and B and that this interaction with A and B induces or stabilizes the A-B interaction.


2003 ◽  
Vol 23 (12) ◽  
pp. 4386-4400 ◽  
Author(s):  
Pascal Lefevre ◽  
Svitlana Melnik ◽  
Nicola Wilson ◽  
Arthur D. Riggs ◽  
Constanze Bonifer

ABSTRACT Expression of the chicken lysozyme gene is upregulated during macrophage differentiation and reaches its highest level in bacterial lipopolysaccharide (LPS)-stimulated macrophages. This is accompanied by complex alterations in chromatin structure. We have previously shown that chromatin fine-structure alterations precede the onset of gene expression in macrophage precursor cells and mark the lysozyme chromatin domain for expression later in development. To further examine this phenomenon and to investigate the basis for the differentiation-dependent alterations of lysozyme chromatin, we studied the recruitment of transcription factors to the lysozyme locus in vivo at different stages of myeloid differentiation. Factor recruitment occurred in several steps. First, early-acting transcription factors such as NF1 and Fli-1 bound to a subset of enhancer elements and recruited CREB-binding protein. LPS stimulation led to an additional recruitment of C/EBPβ and a significant change in enhancer and promoter structure. Transcription factor recruitment was accompanied by specific changes in histone modification within the lysozyme chromatin domain. Interestingly, we present evidence for a transient interaction of transcription factors with lysozyme chromatin in lysozyme-nonexpressing macrophage precursors, which was accompanied by a partial demethylation of CpG sites. This indicates that a partially accessible chromatin structure of lineage-specific genes is a hallmark of hematopoietic progenitor cells.


1999 ◽  
Vol 10 (12) ◽  
pp. 2480-2487
Author(s):  
PETER R. MERTENS ◽  
MARIA ALEXANDRA ALFONSO-JAUME ◽  
KARIN STEINMANN ◽  
DAVID H. LOVETT

Abstract. Experimental and clinical studies strongly suggest that gelatinase A plays a central role in the evolution of glomerular injury and sclerosis. The sequences of the 5′ flanking regions of the human and rat gelatinase A genes do not share similarities with other members of the matrix metallo-proteinase gene family and are regulated in a distinctive manner. The human and rat gelatinase A genes include regions of significant homology (r2 human; RE-1 rat), which have been shown to act as potent cis-activators of transcription. The rat RE-1 sequence interacts specifically with the developmentally regulated transcription factors AP2 and YB-1, resulting in a synergistic activation of gelatinase A transcription. Although the human r2 sequence specifically interacts with AP2 (Mol Cell Biol 10: 6524-6532, 1990), there is no clear evidence for the presence of a canonical YB-1 binding site (Y-box) within this sequence. This study demonstrates, despite the absence of a canonical Y-box sequence in the r2 element, that YB-1 and AP2 specifically interact with r2, yielding synergistic transactivation of the human gelatinase A gene. It is concluded that the r2 element is the conserved functional analog of the RE-1 element, and that interactions of AP2 and YB-1 govern human gelatinase A gene expression.


2022 ◽  
Author(s):  
Elena Mikhaylova ◽  
Alexander Artyukhin ◽  
Michael Shein ◽  
Khalit Musin ◽  
Anna Sukhareva ◽  
...  

The Brassicaceae plant family contains many economically important crops such as Brassica napus L., Brassica rapa L., Brassica oleracea L., Brassica juncea L., Eruca sativa Mill., Camelina sativa L. and Raphanus sativus L. Insufficient data on the genetic regulation of agronomic traits in these species complicates the editing of their genomes. In recent years, the attention of the academic community has been drawn to anthocyanin hyperaccumulation. This trait is not only beneficial for human health, but can also increase plant resistance to stress. MYB transcription factors are the main regulators of flavonoid biosynthesis in plants. Some of them are well studied in Arabidopsis thaliana. The AtMYB60 gene is a transcriptional repressor of anthocyanin biosynthesis, and it also negatively impacts plant responses to drought stress. Myb60 is one of the least studied transcription factors with similar functions in Brassicaceae. There is a high degree of homology between predicted MYB60 genes of A. thaliana and related plant species. However, functions of these homologous genes have never been studied. Gene knockout by CRISPR/Cas technology remains the easiest way to perform genome editing in order to discover the role of individual plant genes. Disruption of genes acting as negative regulators of anthocyanin biosynthesis could result in color staining of plant tissues and an increase in stress tolerance. In the present study, we investigated the AtMYB60 gene and its homologs in Brassicaceae plants and suggested universal gRNAs to knockout these genes. Keywords: CRISPR, Brassicaceae, MYB60, knockout, anthocyanin


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1483-1483
Author(s):  
Ian D Cooley ◽  
Kaitlin A Read ◽  
Michael D Powell ◽  
Chandra E Baker ◽  
Bharath Sreekumar ◽  
...  

Abstract Background: CD4+ T helper cells play critical roles in the regulation of pathogen-specific immune responses and immune tolerance. The formation of each individual T helper cell subset is dictated by the expression of a unique gene program. These gene programs are regulated by both the cytokine environment and cell-intrinsic, cytokine-responsive "lineage-defining" transcription factors, which imprint the conserved gene expression programs characteristic of a given T helper cell lineage. The transcriptional repressor Bcl-6 is one such factor, and has been identified as the lineage-defining transcription factor for the T follicular helper (TFH) cell subset. TFH cells participate in the generation of humoral immunity by providing help to B cells, which are responsible for the production of pathogen-neutralizing antibodies. Interestingly, Bcl-6 expression has also been implicated in the formation of CD4+ central memory T (TCM) cells, which play a critical role in long-term cell-mediated immunity. Recently, our laboratory has demonstrated that Bcl-6 expression can be induced in effector T helper 1 (TH1) cells in response to decreased interleukin 2 (IL-2) signaling. Consequently, TH1 cells are capable of upregulating Bcl-6-dependent TFH- and TCM-like gene programs, suggesting that these cells may be able to contribute to aspects of long-term humoral and cell-mediated immunity. Despite these insights, the upstream factor(s) that directly control the expression of Bcl-6 remain largely unknown. Preliminary RNAseq analysis indicated that the expression of members of the Ikaros family of zinc-finger transcription factors, which have been shown to play important roles in regulating gene expression during hematopoiesis, correlated with that of Bcl-6 in TH1 and TFH/TCM-like cells. As such, we hypothesized that Ikaros-family proteins may contribute to the regulation of Bcl-6 expression. Methods: Naïve CD4+ T cells isolated from the spleens and lymph nodes of 5-8 week old C57BL/6 mice were stimulated with α-CD3 and α-CD28 in TH1 polarizing conditions. Following the generation of TH1 cells, these cells were split into either high IL-2 conditions to maintain the TH1 phenotype or into low IL-2 conditions to induce the TFH/TCM-like phenotype. Total cellular RNA, total cellular protein, and chromatin samples were isolated for analysis. Results: In this study, we demonstrate that the Ikaros family members, Ikaros and Aiolos, are preferentially expressed in TFH/TCM-like cells when compared to TH1 cells. siRNA knockdown demonstrates that the expression of Bcl-6 correlates with that of Ikaros and/or Aiolos. To define the molecular mechanisms that lead to the aforementioned findings, we used chromatin immunoprecipitation (ChIP) assays to show that Ikaros and Aiolos directly bind to the Bcl-6 promoter region. Interestingly, co-immunoprecipitation experiments reveal that Ikaros and Aiolos physically interact, suggesting that they may act cooperatively to promote Bcl-6 expression. Finally, Ikaros and Aiolos siRNA experiments show that reduced expression of these transcription factors correlates with a reduction in the expression of a number of canonical TFH and TCM genes. Conclusion: Collectively, these results demonstrate that the Ikaros family members Ikaros and Aiolos are IL-2-sensitive transcription factors that positively regulate Bcl-6 expression and that of key TFH and TCM genes. These data support the possibility that Ikaros and Aiolos may be critical factors in the induction of the TFH and TCM cell types and thus, potentially, in the regulation of long-term humoral and cell-mediated immunity. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Markus Nevil ◽  
Tyler J. Gibson ◽  
Constantine Bartolutti ◽  
Anusha Iyengar ◽  
Melissa M Harrison

AbstractThe dramatic changes in gene expression required for development necessitate the establishment of cis-regulatory modules defined by regions of accessible chromatin. Pioneer transcription factors have the unique property of binding closed chromatin and facilitating the establishment of these accessible regions. Nonetheless, much of how pioneer transcription factors coordinate changes in chromatin accessibility during development remains unknown. To determine whether pioneer-factor function is intrinsic to the protein or whether pioneering activity is developmentally modulated, we studied the highly conserved, essential transcription factor, Grainy head (Grh). Grh is expressed throughout Drosophila development and functions as a pioneer factor in the larvae. We demonstrated that Grh remains bound to condensed mitotic chromosomes, a property shared with other pioneer factors. By assaying chromatin accessibility in embryos lacking either maternal or zygotic Grh at three stages of development, we discovered that Grh is not required for chromatin accessibility in early embryogenesis, in contrast to its essential functions later in development. Our data reveal that the pioneering activity of Grh is temporally regulated and is likely influenced by additional factors expressed at a given developmental stage.


Sign in / Sign up

Export Citation Format

Share Document