scholarly journals Productive HIV-1 Infection of Primary CD4+ T Cells Induces Mitochondrial Membrane Permeabilization Leading to a Caspase-independent Cell Death

2001 ◽  
Vol 277 (2) ◽  
pp. 1477-1487 ◽  
Author(s):  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Daniel Lelièvre ◽  
Laure Moutouh-de Parseval ◽  
Allan J. Hance ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Cláudia S. F. Queiroga ◽  
Ana S. Almeida ◽  
Helena L. A. Vieira

Mitochondria present two key roles on cellular functioning: (i) cell metabolism, being the main cellular source of energy and (ii) modulation of cell death, by mitochondrial membrane permeabilization. Carbon monoxide (CO) is an endogenously produced gaseoustransmitter, which presents several biological functions and is involved in maintaining cell homeostasis and cytoprotection. Herein, mitochondrion is approached as the main cellular target of carbon monoxide (CO). In this paper, two main perspectives concerning CO modulation of mitochondrial functioning are evaluated. First, the role of CO on cellular metabolism, in particular oxidative phosphorylation, is discussed, namely, on: cytochromecoxidase activity, mitochondrial respiration, oxygen consumption, mitochondrial biogenesis, and general cellular energetic status. Second, the mitochondrial pathways involved in cell death inhibition by CO are assessed, in particular the control of mitochondrial membrane permeabilization.


2013 ◽  
Vol 9 (5) ◽  
pp. e1003328 ◽  
Author(s):  
Mireille Laforge ◽  
Sophie Limou ◽  
Francis Harper ◽  
Nicoletta Casartelli ◽  
Vasco Rodrigues ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shringar Rao ◽  
Cynthia Lungu ◽  
Raquel Crespo ◽  
Thijs H. Steijaert ◽  
Alicja Gorska ◽  
...  

AbstractAn innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNβ. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.


2015 ◽  
Vol 90 (2) ◽  
pp. 904-916 ◽  
Author(s):  
Benjamin Trinité ◽  
Chi N. Chan ◽  
Caroline S. Lee ◽  
David N. Levy

ABSTRACTHIV-1 infection leads to the progressive depletion of the CD4 T cell compartment by various known and unknown mechanisms.In vivo, HIV-1 infects both activated and resting CD4 T cells, butin vitro, in the absence of any stimuli, resting CD4 T cells from peripheral blood are resistant to infection. This resistance is generally attributed to an intracellular environment that does not efficiently support processes such as reverse transcription (RT), resulting in abortive infection. Here, we show thatin vitroHIV-1 infection of resting CD4 T cells induces substantial cell death, leading to abortive infection.In vivo, however, various microenvironmental stimuli in lymphoid and mucosal tissues provide support for HIV-1 replication. For example, common gamma-chain cytokines (CGCC), such as interleukin-7 (IL-7), render resting CD4 T cells permissible to HIV-1 infection without inducing T cell activation. Here, we find that CGCC primarily allow productive infection by preventing HIV-1 triggering of apoptosis, as evidenced by early release of cytochromecand caspase 3/7 activation. Cell death is triggered both by products of reverse transcription and by virion-borne Vpr protein, and CGCC block both mechanisms. When HIV-1 RT efficiency was enhanced by SIVmac239 Vpx protein, cell death was still observed, indicating that the speed of reverse transcription and the efficiency of its completion contributed little to HIV-1-induced cell death in this system. These results show that a major restriction on HIV-1 infection in resting CD4 T cells resides in the capacity of these cells to survive the early steps of HIV-1 infection.IMPORTANCEA major consequence of HIV-1 infection is the destruction of CD4 T cells. Here, we show that delivery of virion-associated Vpr protein and the process of reverse transcription are each sufficient to trigger apoptosis of resting CD4 T cells isolated from peripheral blood. While these 2 mechanisms have been previously described in various cell types, we show for the first time their concerted effect in inducing resting CD4 T cell depletion. Importantly, we found that cytokines such as IL-7 and IL-4, which are particularly active in sites of HIV-1 replication, protect resting CD4 T cells from these cytopathic effects and, primarily through this protection, rather than through enhancement of specific replicative steps, they promote productive infection. This study provides important new insights for the understanding of the early steps of HIV-1 infection and T cell depletion.


2001 ◽  
Vol 193 (4) ◽  
pp. 509-520 ◽  
Author(s):  
Etienne Jacotot ◽  
Karine F. Ferri ◽  
Chahrazed El Hamel ◽  
Catherine Brenner ◽  
Sabine Druillennec ◽  
...  

Viral protein R (Vpr), an apoptogenic accessory protein encoded by HIV-1, induces mitochondrial membrane permeabilization (MMP) via a specific interaction with the permeability transition pore complex, which comprises the voltage-dependent anion channel (VDAC) in the outer membrane (OM) and the adenine nucleotide translocator (ANT) in the inner membrane. Here, we demonstrate that a synthetic Vpr-derived peptide (Vpr52-96) specifically binds to the intermembrane face of the ANT with an affinity in the nanomolar range. Taking advantage of this specific interaction, we determined the role of ANT in the control of MMP. In planar lipid bilayers, Vpr52-96 and purified ANT cooperatively form large conductance channels. This cooperative channel formation relies on a direct protein–protein interaction since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT. When added to isolated mitochondria, Vpr52-96 uncouples the respiratory chain and induces a rapid inner MMP to protons and NADH. This inner MMP precedes outer MMP to cytochrome c. Vpr52-96–induced matrix swelling and inner MMP both are prevented by preincubation of purified mitochondria with recombinant Bcl-2 protein. In contrast to König's polyanion (PA10), a specific inhibitor of the VDAC, Bcl-2 fails to prevent Vpr52-96 from crossing the mitochondrial OM. Rather, Bcl-2 reduces the ANT–Vpr interaction, as determined by affinity purification and plasmon resonance studies. Concomitantly, Bcl-2 suppresses channel formation by the ANT–Vpr complex in synthetic membranes. In conclusion, both Vpr and Bcl-2 modulate MMP through a direct interaction with ANT.


Sign in / Sign up

Export Citation Format

Share Document