scholarly journals Transcription Factor NF-κB Is Necessary for Up-regulation of Type 1 Angiotensin II Receptor mRNA in Rat Cardiac Fibroblasts Treated with Tumor Necrosis Factor-α or Interleukin-1β

2001 ◽  
Vol 277 (8) ◽  
pp. 5719-5724 ◽  
Author(s):  
Randy T. Cowling ◽  
Devorah Gurantz ◽  
JianFeng Peng ◽  
Wolfgang H. Dillmann ◽  
Barry H. Greenberg
1999 ◽  
Vol 85 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Devorah Gurantz ◽  
Randy T. Cowling ◽  
Francisco J. Villarreal ◽  
Barry H. Greenberg

2014 ◽  
Vol 210 (7) ◽  
pp. 1042-1046 ◽  
Author(s):  
Sagar A. Vaidya ◽  
Christian Korner ◽  
Michael N. Sirignano ◽  
Molly Amero ◽  
Sue Bazner ◽  
...  

2001 ◽  
Vol 280 (5) ◽  
pp. F777-F785 ◽  
Author(s):  
Guangjie Guo ◽  
Jeremiah Morrissey ◽  
Ruth McCracken ◽  
Timothy Tolley ◽  
Helen Liapis ◽  
...  

Angiotensin II upregulates tumor necrosis factor-α (TNF-α) in the rat kidney with unilateral ureteral obstruction (UUO). In a mouse model of UUO, we found that tubulointerstitial fibrosis is blunted when the TNF-α receptor, TNFR1, is functionally knocked out. In this study, we used mutant mice with UUO in which the angiotensin II receptor AT1a or the TNF-α receptors TNFR1 and TNFR2 were knocked out to elucidate interactions between the two systems. The contribution of both systems to renal fibrosis was assessed by treating TNFR1/TNFR2-double knockout (KO) mice with an angiotensin-converting enzyme inhibitor, enalapril. The increased interstitial volume (Vvint) in the C57BI/6 wild-type mouse was decreased in the AT1a KO from 32.8 ± 4.0 to 21.0 ± 3.7% ( P < 0.005) or in the TNFR1/TNFR2 KO to 22.3 ± 2.1% ( P < 0.005). The Vvint of the TNFR1/TNFR2 KO was further decreased to 15.2 ± 3.7% ( P < 0.01) by enalapril compared with no treatment. The induction of TNF-α mRNA and transforming growth factor-β1 (TGF-β1) mRNA in the kidney with UUO was significantly blunted in the AT1a or TNFR1/TNFR2 KO mice compared with the wild-type mice. Treatment of the TNFR1/TNFR2 KO mouse with enalapril reduced both TNF-α and TGF-β1 mRNA and their proteins to near normal levels. Also, α-smooth muscle actin expression and myofibroblast proliferation were significantly inhibited in the AT1a or TNFR1/TNFR2 KO mice, and they were further inhibited in enalapril-treated TNFR1/TNFR2 KO mice. Incapacitating the angiotensin II or the TNF-α systems individually leads to partial blunting of fibrosis. Incapacitating both systems, by using a combination of genetic and pharmacological means, further inhibited interstitial fibrosis and tubule atrophy in obstructive nephropathy.


1999 ◽  
Vol 31 (11) ◽  
pp. 1949-1959 ◽  
Author(s):  
Martina Jacobs ◽  
Sibylle Staufenberger ◽  
Ulrich Gergs ◽  
Karsten Meuter ◽  
Katja Brandstätter ◽  
...  

1998 ◽  
Vol 187 (7) ◽  
pp. 1069-1079 ◽  
Author(s):  
Klaus Ruckdeschel ◽  
Suzanne Harb ◽  
Andreas Roggenkamp ◽  
Mathias Hornef ◽  
Robert Zumbihl ◽  
...  

In this study, we investigated the activity of transcription factor NF-κB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-κB signal, Y. enterocolitica inhibited NF-κB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IκB-α and IκB-β observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-κB and to suppress the tumor necrosis factor α (TNF-α) production as well as to trigger macrophage apoptosis. When NF-κB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-α secretion. Y. enterocolitica also impaired the activity of NF-κB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-α could induce HeLa cell apoptosis alone, TNF-α provoked apoptosis when activation of NF-κB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-κB, which inhibits TNF-α release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.


Sign in / Sign up

Export Citation Format

Share Document