scholarly journals Cysteine Mutagenesis Reveals Transmembrane Residues Associated with Charge Translocation in Prestin

2009 ◽  
Vol 285 (5) ◽  
pp. 3103-3113 ◽  
Author(s):  
Ryan M. McGuire ◽  
Haiying Liu ◽  
Fred A. Pereira ◽  
Robert M. Raphael
1992 ◽  
Vol 671 (1 Ion-Motive AT) ◽  
pp. 170-188 ◽  
Author(s):  
M. STENGELIN ◽  
A. EISENRAUCH ◽  
K. FENDLER ◽  
G. NAGEL ◽  
H. T. W. HIJDEN ◽  
...  
Keyword(s):  

2000 ◽  
Vol 28 (5) ◽  
pp. A469-A469 ◽  
Author(s):  
S. Siletsky ◽  
D. Zaslavsky ◽  
I. Smirnova ◽  
A. Kaulen ◽  
A. Konstantinov

Author(s):  
Helen J. Zeng ◽  
Mark A. Johnson

The ease with which the pH is routinely determined for aqueous solutions masks the fact that the cationic product of Arrhenius acid dissolution, the hydrated proton, or H+(aq), is a remarkably complex species. Here, we review how results obtained over the past 30 years in the study of H+⋅(H2O) n cluster ions isolated in the gas phase shed light on the chemical nature of H+(aq). This effort has also revealed molecular-level aspects of the Grotthuss relay mechanism for positive-charge translocation in water. Recently developed methods involving cryogenic cooling in radiofrequency ion traps and the application of two-color, infrared–infrared (IR–IR) double-resonance spectroscopy have established a clear picture of how local hydrogen-bond topology drives the diverse spectral signatures of the excess proton. This information now enables a new generation of cluster studies designed to unravel the microscopic mechanics underlying the ultrafast relaxation dynamics displayed by H+(aq). Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1996 ◽  
Vol 93 (1) ◽  
pp. 300-304 ◽  
Author(s):  
M. T. Perez-Garcia ◽  
N. Chiamvimonvat ◽  
E. Marban ◽  
G. F. Tomaselli

2019 ◽  
Vol 116 (16) ◽  
pp. 8010-8017 ◽  
Author(s):  
Jean Defourny ◽  
Alain Aghaie ◽  
Isabelle Perfettini ◽  
Paul Avan ◽  
Sedigheh Delmaghani ◽  
...  

Noise overexposure causes oxidative stress, leading to auditory hair cell damage. Adaptive peroxisome proliferation involving pejvakin, a peroxisome-associated protein from the gasdermin family, has been shown to protect against this harmful oxidative stress. However, the role of pejvakin in peroxisome dynamics and homeostasis remains unclear. Here we show that sound overstimulation induces an early and rapid selective autophagic degradation of peroxisomes (pexophagy) in auditory hair cells from wild-type, but not pejvakin-deficient (Pjvk−/−), mice. Noise overexposure triggers recruitment of the autophagosome-associated protein MAP1LC3B (LC3B; microtubule-associated protein 1 light chain 3β) to peroxisomes in wild-type, but not Pjvk−/−, mice. We also show that pejvakin–LC3B binding involves an LC3-interacting region within the predicted chaperone domain of pejvakin. In transfected cells and in vivo transduced auditory hair cells, cysteine mutagenesis experiments demonstrated the requirement for both C328 and C343, the two cysteine residues closest to the C terminus of pejvakin, for reactive oxygen species-induced pejvakin–LC3B interaction and pexophagy. The viral transduction of auditory hair cells from Pjvk−/− mice in vivo with both Pjvk and Lc3b cDNAs completely restored sound-induced pexophagy, fully prevented the development of oxidative stress, and resulted in normal levels of peroxisome proliferation, whereas Pjvk cDNA alone yielded only a partial correction of the defects. Overall, our results demonstrate that pexophagy plays a key role in noise-induced peroxisome proliferation and identify defective pexophagy as a cause of noise-induced hearing loss. They suggest that pejvakin acts as a redox-activated pexophagy receptor/adaptor, thereby identifying a previously unknown function of gasdermin family proteins.


1997 ◽  
Vol 1318 (1-2) ◽  
pp. 299-306 ◽  
Author(s):  
Mårten Wikström ◽  
Joel E Morgan ◽  
Michael I Verkhovsky

Sign in / Sign up

Export Citation Format

Share Document