scholarly journals Human Heat Shock Protein 105/110 kDa (Hsp105/110) Regulates Biogenesis and Quality Control of Misfolded Cystic Fibrosis Transmembrane Conductance Regulator at Multiple Levels

2012 ◽  
Vol 287 (23) ◽  
pp. 19158-19170 ◽  
Author(s):  
Anita Saxena ◽  
Yeshavanth K. Banasavadi-Siddegowda ◽  
Yifei Fan ◽  
Sumit Bhattacharya ◽  
Gargi Roy ◽  
...  
2002 ◽  
Vol 366 (3) ◽  
pp. 797-806 ◽  
Author(s):  
Carlos M. FARINHA ◽  
Paulo NOGUEIRA ◽  
Filipa MENDES ◽  
Deborah PENQUE ◽  
Margarida D. AMARAL

The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.


2004 ◽  
Vol 15 (9) ◽  
pp. 4003-4010 ◽  
Author(s):  
Simon Alberti ◽  
Karsten Böhse ◽  
Verena Arndt ◽  
Anton Schmitz ◽  
Jörg Höhfeld

The CHIP ubiquitin ligase turns molecular chaperones into protein degradation factors. CHIP associates with the chaperones Hsc70 and Hsp90 during the regulation of signaling pathways and during protein quality control, and directs chaperone-bound clients to the proteasome for degradation. Obviously, this destructive activity should be carefully controlled. Here, we identify the cochaperone HspBP1 as an inhibitor of CHIP. HspBP1 attenuates the ubiquitin ligase activity of CHIP when complexed with Hsc70. As a consequence, HspBP1 interferes with the CHIP-induced degradation of immature forms of the cystic fibrosis transmembrane conductance regulator (CFTR) and stimulates CFTR maturation. Our data reveal a novel regulatory mechanism that determines folding and degradation activities of molecular chaperones.


Cell ◽  
2006 ◽  
Vol 126 (3) ◽  
pp. 571-582 ◽  
Author(s):  
J. Michael Younger ◽  
Liling Chen ◽  
Hong-Yu Ren ◽  
Meredith F.N. Rosser ◽  
Emma L. Turnbull ◽  
...  

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Ramanath Narayana Hegde ◽  
Seetharaman Parashuraman ◽  
Francesco Iorio ◽  
Diego Di Bernardo ◽  
Alberto Luini

2013 ◽  
Vol 24 (2) ◽  
pp. 74-84 ◽  
Author(s):  
Annette Ahner ◽  
Xiaoyan Gong ◽  
Bela Z. Schmidt ◽  
Kathryn W. Peters ◽  
Wael M. Rabeh ◽  
...  

Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27’s ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4’s impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin–proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.


2004 ◽  
Vol 15 (9) ◽  
pp. 4125-4135 ◽  
Author(s):  
Andreas Gnann ◽  
John R. Riordan ◽  
Dieter H. Wolf

Cystic fibrosis is the most widespread hereditary disease among the white population caused by different mutations of the apical membrane ATP-binding cassette transporter cystic fibrosis transmembrane conductance regulator (CFTR). Its most common mutation, ΔF508, leads to nearly complete degradation via endoplasmic reticulum-associated degradation (ERAD). Elucidation of the quality control and degradation mechanisms might give rise to new therapeutic approaches to cure this disease. In the yeast Saccharomyces cerevisiae, a variety of components of the protein quality control and degradation system have been identified. Nearly all of these components share homology with mammalian counterparts. We therefore used yeast mutants defective in the ERAD system to identify new components that are involved in human CFTR quality control and degradation. We show the role of the lectin Htm1p in the degradation process of CFTR. Complementation of the HTM1 deficiency in yeast cells by the mammalian orthologue EDEM underlines the necessity of this lectin for CFTR degradation and highlights the similarity of quality control and ERAD in yeast and mammals. Furthermore, degradation of CFTR requires the ubiquitin protein ligases Der3p/Hrd1p and Doa10p as well as the cytosolic trimeric Cdc48p-Ufd1p-Npl4p complex. These proteins also were found to be necessary for ERAD of a mutated yeast “relative” of CFTR, Pdr5*p.


2021 ◽  
Vol 22 (8) ◽  
pp. 4252
Author(s):  
Stéphanie Simon ◽  
Abdel Aissat ◽  
Fanny Degrugillier ◽  
Benjamin Simonneau ◽  
Pascale Fanen ◽  
...  

Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal and pathological cells. Here, we have reviewed the role played by HspB1, HspB4 and HspB5 in the context of Cystic Fibrosis (CF), a severe monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane conductance Regulator protein (CFTR) some of which trigger its misfolding and rapid degradation, particularly the most frequent one, F508del-CFTR. While HspB1 and HspB4 favor the degradation of CFTR mutants, HspB5 and particularly one of its phosphorylated forms positively enhance the transport at the plasma membrane, stability and function of the CFTR mutant. Moreover, HspB5 molecules stimulate the cellular efficiency of currently used CF therapeutic molecules. Different strategies are suggested to modulate the level of expression or the activity of these small heat shock proteins in view of potential in vivo therapeutic approaches. We then conclude with other small heat shock proteins that should be tested or further studied to improve our knowledge of CFTR processing.


Sign in / Sign up

Export Citation Format

Share Document