scholarly journals Characterization of Nuclear Localization Signal in the N Terminus of Integrin-linked Kinase-associated Phosphatase (ILKAP) and Its Essential Role in the Down-regulation of RSK2 Protein Signaling

2013 ◽  
Vol 288 (9) ◽  
pp. 6259-6271 ◽  
Author(s):  
Wang Zhou ◽  
Hao Cao ◽  
Xinghai Yang ◽  
Kan Cong ◽  
Wei Wang ◽  
...  
Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Dong Liu ◽  
Nigel M Crawford

Abstract Tag1 is an autonomous transposable element of Arabidopsis thaliana. Tag1 expression was examined in two ecotypes of Arabidopsis (Columbia and No-0) that were transformed with CaMV 35S-Tag1-GUS DNA. These ecotypes contain no endogenous Tag1 elements. A major 2.3-kb and several minor transcripts were detected in all major organs of the plants. The major transcript encoded a putative transposase of 84.2 kD with two nuclear localization signal sequences and a region conserved among transposases of the Ac or hAT family of elements. The abundance of Tag1 transcripts varied among transgenic lines and did not correlate with somatic excision frequency or germinal reversion rates, suggesting that factors other than transcript levels control Tag1 excision activity. In untransformed plants of the Landsberg ecotype, which contain two endogenous Tag1 elements, no Tag1 transcripts were detected. Agrobacterium-mediated transformation of these Landsberg plants with a defective 1.4-kb Tag1 element resulted in the appearance of full-length Tag1 transcripts from the endogenous elements. Transformation with control DNA containing no Tag1 sequences did not activate endogenous Tag1 expression. These results indicate that Agrobacterium-mediated transformation with dTag1 can activate the expression of Tag1.


1997 ◽  
Vol 250 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Maija Vihinen-Ranta ◽  
Laura Kakkola ◽  
Anne Kalela ◽  
Pekka Vilja ◽  
Matti Vuento

Virology ◽  
2007 ◽  
Vol 360 (1) ◽  
pp. 191-198 ◽  
Author(s):  
Kristin Klucevsek ◽  
Mary Wertz ◽  
John Lucchi ◽  
Anna Leszczynski ◽  
Junona Moroianu

2015 ◽  
Vol 462 (3) ◽  
pp. 201-207 ◽  
Author(s):  
Tetsuji Moriyama ◽  
Percival Sangel ◽  
Hiroki Yamaguchi ◽  
Chikashi Obuse ◽  
Yoichi Miyamoto ◽  
...  

1998 ◽  
Vol 18 (5) ◽  
pp. 2640-2649 ◽  
Author(s):  
Matthew Latimer ◽  
Mary K. Ernst ◽  
Linda L. Dunn ◽  
Marina Drutskaya ◽  
Nancy R. Rice

ABSTRACT Members of the Rel/NF-κB family of transcription factors are related to each other over a region of about 300 amino acids called the Rel Homology Domain (RHD), which governs DNA binding, dimerization, and binding to inhibitor. At the C-terminal end of the RHD, each protein has a nuclear localization signal (NLS). The crystal structures of the p50 and RelA family members show that the RHD consists of two regions: an N-terminal section which contains some of the DNA contacts and a C-terminal section which contains the remaining DNA contacts and controls dimerization. In unstimulated cells, the homo- or heterodimeric Rel/NF-κB proteins are cytoplasmic by virtue of binding to an inhibitor protein (IκB) which somehow masks the NLS of each member of the dimer. The IκB proteins consist of an ankyrin-repeat-containing domain that is required for binding to dimers and N- and C-terminal domains that are dispensable for binding to most dimers. In this study, we examined the interaction between IκBα and Rel family homodimers by mutational analysis. We show that (i) the dimerization regions of p50, RelA, and c-Rel are sufficient for binding to IκBα, (ii) the NLSs of RelA and c-Rel are not required for binding to IκBα but do stabilize the interaction, (iii) the NLS of p50 is required for binding to IκBα, (iv) only certain residues within the p50 NLS are required for binding, and (v) in a p50-IκBα complex or a c-Rel-IκBα complex, the N terminus of IκBα either directly or indirectly masks one or both of the dimer NLSs.


Sign in / Sign up

Export Citation Format

Share Document