scholarly journals Single-molecule Investigation of Substrate Binding Kinetics and Protein Conformational Dynamics of a B-family Replicative DNA Polymerase

2013 ◽  
Vol 288 (16) ◽  
pp. 11590-11600 ◽  
Author(s):  
Brian A. Maxwell ◽  
Zucai Suo
2013 ◽  
Vol 42 (4) ◽  
pp. 2555-2563 ◽  
Author(s):  
Alfonso Brenlla ◽  
Radoslaw P. Markiewicz ◽  
David Rueda ◽  
Louis J. Romano

Abstract Y-family DNA polymerases play a crucial role in translesion DNA synthesis. Here, we have characterized the binding kinetics and conformational dynamics of the Y-family polymerase Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) using single-molecule fluorescence. We find that in the absence of dNTPs, the binary complex shuttles between two different conformations within ∼1 s. These data are consistent with prior crystal structures in which the nucleotide binding site is either occupied by the terminal base pair (preinsertion conformation) or empty following Dpo4 translocation by 1 base pair (insertion conformation). Most interestingly, on dNTP binding, only the insertion conformation is observed and the correct dNTP stabilizes this complex compared with the binary complex, whereas incorrect dNTPs destabilize it. However, if the n+1 template base is complementary to the incoming dNTP, a structure consistent with a misaligned template conformation is observed, in which the template base at the n position loops out. This structure provides evidence for a Dpo4 mutagenesis pathway involving a transient misalignment mechanism.


2015 ◽  
Vol 43 (5) ◽  
pp. 1041-1047 ◽  
Author(s):  
Florence Husada ◽  
Giorgos Gouridis ◽  
Ruslan Vietrov ◽  
Gea K. Schuurman-Wolters ◽  
Evelyn Ploetz ◽  
...  

ATP-binding cassette (ABC) transporters play crucial roles in cellular processes, such as nutrient uptake, drug resistance, cell-volume regulation and others. Despite their importance, all proposed molecular models for transport are based on indirect evidence, i.e. functional interpretation of static crystal structures and ensemble measurements of function and structure. Thus, classical biophysical and biochemical techniques do not readily visualize dynamic structural changes. We recently started to use single-molecule fluorescence techniques to study conformational states and changes of ABC transporters in vitro, in order to observe directly how the different steps during transport are coordinated. This review summarizes our scientific strategy and some of the key experimental advances that allowed the substrate-binding mechanism of prokaryotic ABC importers and the transport cycle to be explored. The conformational states and transitions of ABC-associated substrate-binding domains (SBDs) were visualized with single-molecule FRET, permitting a direct correlation of structural and kinetic information of SBDs. We also delineated the different steps of the transport cycle. Since information in such assays are restricted by proper labelling of proteins with fluorescent dyes, we present a simple approach to increase the amount of protein with FRET information based on non-specific interactions between a dye and the size-exclusion chromatography (SEC) column material used for final purification.


2020 ◽  
Author(s):  
Marija Iljina ◽  
Hisham Mazal ◽  
Pierre Goloubinoff ◽  
Inbal Riven ◽  
Gilad Haran

AbstractClpB is an ATP-dependent protein disaggregation machine that is activated on demand by co-chaperones and by aggregates caused by heat shock or mutations. The regulation of ClpB’s function is critical, since its persistent activation is toxic in vivo. Each ClpB molecule is composed of an auxiliary N-terminal domain (NTD), an essential regulatory middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains that are responsible for ATP-fuelled substrate threading. The NTD is generally thought to serve as a substrate-binding domain, which is commonly considered to be dispensable for ClpB’s activity, and is not well-characterized structurally due to its high mobility. Here we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB’s NTD and reveal its involvement in novel allosteric interactions. We find that the NTD fluctuates on a microsecond timescale and, unexpectedly, shows little change in conformational dynamics upon binding of a substrate protein. During its fast motion, the NTD makes crucial contacts with the regulatory MD, directly affecting its conformational state and thereby influencing the overall ATPase and unfolding activity of this machine. Moreover, we also show that the NTD mediates signal transduction to the nucleotide-binding domains through conserved residues. The two regulatory pathways revealed here enable the NTD to suppress the MD in the absence of protein substrate, and to limit ATPase and disaggregation activities of ClpB. The use of multiple parallel allosteric pathways involving ultrafast domain motions might be common to AAA+ molecular machines to ensure their fast and reversible activation.


Sign in / Sign up

Export Citation Format

Share Document