scholarly journals Atypical Cohesin-Dockerin Complex Responsible for Cell Surface Attachment of Cellulosomal Components

2013 ◽  
Vol 288 (23) ◽  
pp. 16827-16838 ◽  
Author(s):  
Orly Salama-Alber ◽  
Maroor K. Jobby ◽  
Seth Chitayat ◽  
Steven P. Smith ◽  
Bryan A. White ◽  
...  

The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nm) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.

Biochemistry ◽  
2009 ◽  
Vol 48 (43) ◽  
pp. 10395-10404 ◽  
Author(s):  
D. Wade Abbott ◽  
Elizabeth Ficko-Blean ◽  
Alicia Lammerts van Bueren ◽  
Artur Rogowski ◽  
Alan Cartmell ◽  
...  

2004 ◽  
Vol 326 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Lesley McCartney ◽  
Harry J Gilbert ◽  
David N Bolam ◽  
Alisdair B Boraston ◽  
J.Paul Knox

Author(s):  
Immacolata Venditto ◽  
Arun Goyal ◽  
Andrew Thompson ◽  
Luis M. A. Ferreira ◽  
Carlos M. G. A. Fontes ◽  
...  

Microbial degradation of the plant cell wall is a fundamental biological process with considerable industrial importance. Hydrolysis of recalcitrant polysaccharides is orchestrated by a large repertoire of carbohydrate-active enzymes that display a modular architecture in which a catalytic domain is connectedvialinker sequences to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs direct the appended catalytic modules to their target substrates, thus potentiating catalysis. The genome of the most abundant ruminal cellulolytic bacterium,Ruminococcus flavefaciensstrain FD-1, provides an opportunity to discover novel cellulosomal proteins involved in plant cell-wall deconstruction. It encodes a modular protein comprising a glycoside hydrolase family 9 catalytic module (GH9) linked to two unclassified tandemly repeated CBMs (termed CBM-Rf6A and CBM-Rf6B) and a C-terminal dockerin. The novel CBM-Rf6A from this protein has been crystallized and data were processed for the native and a selenomethionine derivative to 1.75 and 1.5 Å resolution, respectively. The crystals belonged to orthorhombic and cubic space groups, respectively. The structure was solved by a single-wavelength anomalous dispersion experiment using theCCP4 program suite andSHELXC/D/E.


2008 ◽  
Vol 190 (24) ◽  
pp. 8220-8222 ◽  
Author(s):  
Anat Ezer ◽  
Erez Matalon ◽  
Sadanari Jindou ◽  
Ilya Borovok ◽  
Nof Atamna ◽  
...  

ABSTRACT The rumen bacterium Ruminococcus albus binds to and degrades crystalline cellulosic substrates via a unique cellulose degradation system. A unique family of carbohydrate-binding modules (CBM37), located at the C terminus of different glycoside hydrolases, appears to be responsible both for anchoring these enzymes to the bacterial cell surface and for substrate binding.


2008 ◽  
Vol 190 (15) ◽  
pp. 5455-5463 ◽  
Author(s):  
Robert T. DeBoy ◽  
Emmanuel F. Mongodin ◽  
Derrick E. Fouts ◽  
Louise E. Tailford ◽  
Hoda Khouri ◽  
...  

ABSTRACT The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40T. Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Chiaki Hori ◽  
Ruopu Song ◽  
Kazuki Matsumoto ◽  
Ruy Matsumoto ◽  
Benjamin B. Minkoff ◽  
...  

ABSTRACT Wood-devastating insects utilize their symbiotic microbes with lignocellulose-degrading abilities to extract energy from recalcitrant woods. It is well known that free-living lignocellulose-degrading fungi secrete various carbohydrate-active enzymes (CAZymes) to degrade plant cell wall components, mainly cellulose, hemicellulose, and lignin. However, CAZymes from insect-symbiotic fungi have not been well documented except for a few examples. In this study, an insect-associated fungus, Daldinia decipiens oita, was isolated as a potential symbiotic fungus of female Xiphydria albopicta captured from Hokkaido forest. This fungus was grown in seven different media containing a single carbon source, glucose, cellulose, xylan, mannan, pectin, poplar, or larch, and the secreted proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 128 CAZymes, including domains of 92 glycoside hydrolases, 15 carbohydrate esterases, 5 polysaccharide lyases, 17 auxiliary activities, and 11 carbohydrate-binding modules, were identified, and these are involved in degradation of cellulose and hemicellulose but not lignin. Together with the results of polysaccharide-degrading activity measurements, we concluded that D. decipiens oita tightly regulates the expression of these CAZymes in response to the tested plant cell wall materials. Overall, this study described the detailed proteomic approach of a woodwasp-associated fungus and revealed that the new isolate, D. decipiens oita, secretes diverse CAZymes to efficiently degrade lignocellulose in the symbiotic environment. IMPORTANCE Recent studies show the potential impacts of insect symbiont microbes on biofuel application with regard to their degradation capability of a recalcitrant plant cell wall. In this study, we describe a novel fungal isolate, D. decipiens oita, as a single symbiotic fungus from the Xiphydria woodwasp found in the northern forests of Japan. Our detailed secretome analyses of D. decipiens oita, together with activity measurements, reveal that this insect-associated fungus exhibits high and broad activities for plant cell wall material degradation, suggesting potential applications within the biomass conversion industry for plant mass degradation.


Sign in / Sign up

Export Citation Format

Share Document