scholarly journals DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons

2015 ◽  
Vol 290 (46) ◽  
pp. 27680-27687 ◽  
Author(s):  
Jing Wei ◽  
Nicholas M. Graziane ◽  
Zhenglin Gu ◽  
Zhen Yan
2008 ◽  
Vol 109 (6) ◽  
pp. 998-1006 ◽  
Author(s):  
Rainer Haseneder ◽  
Stephan Kratzer ◽  
Eberhard Kochs ◽  
Veit-Simon Eckle ◽  
Walter Zieglgänsberger ◽  
...  

Background The neuronal and molecular targets of the inhalational general anesthetic xenon are a matter of debate. The current knowledge is largely based on studies using neurons in culture or heterologous expression systems. In the current study, the authors evaluated for the first time the effect of xenon on synaptic transmission in the basolateral amygdala in an in vitro brain slice preparation of the mouse. Methods A patch clamp technique was used to evaluate the effects of xenon on N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs), as well as on gamma-aminobutyric acid type A receptor-mediated inhibitory postsynaptic currents. The currents were either evoked upon electrical stimulation (NMDA-eEPSCs, AMPA-eEPSCs) or upon focal, laser-guided photolysis of caged l-glutamate (p-NMDA-Cs, p-AMPA-Cs). In addition, the authors investigated the effects of xenon on miniature EPSCs. Results Xenon reversibly reduced basal synaptic transmission but had no effect on gamma-aminobutyric acid type A receptor-mediated inhibitory synaptic transmission. Xenon concentration-dependently diminished NMDA-eEPSCs and p-NMDA-Cs to the same amount. Likewise, xenon-induced reduction of AMPA-eEPSCs and p-AMPA-Cs did not differ. Xenon did not affect the frequency of miniature EPSCs but reduced their amplitude. Conclusions In the current study, xenon considerably depressed NMDA and AMPA receptor-mediated synaptic transmission in the basolateral amygdala without affecting inhibitory synaptic transmission. The results provide evidence that the effects of xenon on NMDA- and AMPA-EPSCs are primarily mediated via postsynaptic mechanisms.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1525-1528 ◽  
Author(s):  
Brian J. Ruscito ◽  
Neil L. Harrison

Abstract Liver failure is often accompanied by cognitive impairment and coma, a syndrome known as hepatic encephalopathy (HE). The administration of flumazenil, a benzodiazepine (BZ) antagonist, is effective in reversing the symptoms of HE in many patients. These clinical observations gave rise to notions of an endogenous BZ-like mechanism in HE, but to date no viable candidate compounds have been characterized. We show here that the hemoglobin (Hb) metabolites hemin and protoporphyrin IX (PPIX) interact with the BZ site on the γ-aminobutyric acid (GABAA) receptor and enhance inhibitory synaptic transmission in a manner similar to diazepam and zolpidem. This finding suggests that hemin and PPIX are neuroactive porphyrins capable of acting as endogenous ligands for the central BZ site. The accumulation of these porphyrins under pathophysiologic conditions provides a potentially novel mechanism for the central manifestations of HE.


2014 ◽  
Vol 120 (3) ◽  
pp. 639-649 ◽  
Author(s):  
Stephan Kratzer ◽  
Hedwig Irl ◽  
Corinna Mattusch ◽  
Martina Bürge ◽  
Jörg Kurz ◽  
...  

Abstract Background: Tranexamic acid (TXA) is commonly used to reduce blood loss in cardiac surgery and in trauma patients. High-dose application of TXA is associated with an increased risk of postoperative seizures. The neuronal mechanisms underlying this proconvulsant action of TXA are not fully understood. In this study, the authors investigated the effects of TXA on neuronal excitability and synaptic transmission in the basolateral amygdala. Methods: Patch clamp recordings and voltage-sensitive dye imaging were performed in acute murine brain slices. Currents through N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor type A (GABAA) receptors were recorded. GABAA receptor–mediated currents were evoked upon electrical stimulation or upon photolysis of caged GABA. TXA was applied at different concentrations. Results: Voltage-sensitive dye imaging demonstrates that TXA (1 mM) reversibly enhances propagation of neuronal excitation (mean ± SEM, 129 ± 6% of control; n = 5). TXA at concentrations of 0.1, 0.3, 1, 5, or 10 mM led to a dose-dependent reduction of GABAA receptor–mediated currents in patch clamp recordings. There was no difference in the half-maximal inhibitory concentration for electrically (0.76 mM) and photolytically (0.84 mM) evoked currents (n = 5 to 9 for each concentration), and TXA did not affect the paired-pulse ratio of GABAA receptor–mediated currents. TXA did not impact glutamatergic synaptic transmission. Conclusions: This study clearly demonstrates that TXA enhances neuronal excitation by antagonizing inhibitory GABAergic neurotransmission. The results provide evidence that this effect is mediated via postsynaptic mechanisms. Because GABAA receptor antagonists are known to promote epileptiform activity, this effect might explain the proconvulsant action of TXA.


Sign in / Sign up

Export Citation Format

Share Document