scholarly journals Binding of Nitric Oxide in CDGSH-type [2Fe-2S] Clusters of the Human Mitochondrial Protein Miner2

2017 ◽  
Vol 292 (8) ◽  
pp. 3146-3153 ◽  
Author(s):  
Zishuo Cheng ◽  
Aaron P. Landry ◽  
Yiming Wang ◽  
Huangen Ding

Iron-sulfur proteins are among the primary targets of nitric oxide in cells. Previous studies have shown that iron-sulfur clusters hosted by cysteine residues in proteins are readily disrupted by nitric oxide forming a protein-bound dinitrosyl iron complex, thiolate-bridged di-iron tetranitrosyl complex, or octanitrosyl cluster. Here we report that human mitochondrial protein Miner2 [2Fe-2S] clusters can bind nitric oxide without disruption of the clusters. Miner2 is a member of a new CDGSH iron-sulfur protein family that also includes two mitochondrial proteins: the type II diabetes-related mitoNEET and the Wolfram syndrome 2-linked Miner1. Miner2 contains two CDGSH motifs, and each CDGSH motif hosts a [2Fe-2S] cluster via three cysteine and one histidine residues. Binding of nitric oxide in the reduced Miner2 [2Fe-2S] clusters produces a major absorption peak at 422 nm without releasing iron or sulfide from the clusters. The EPR measurements and mass spectrometry analyses further reveal that nitric oxide binds to the reduced [2Fe-2S] clusters in Miner2, with each cluster binding one nitric oxide. Although the [2Fe-2S] cluster in purified human mitoNEET and Miner1 fails to bind nitric oxide, a single mutation of Asp-96 to Val in mitoNEET or Asp-123 to Val in Miner1 facilitates nitric oxide binding in the [2Fe-2S] cluster, indicating that a subtle change of protein structure may switch mitoNEET and Miner1 to bind nitric oxide. The results suggest that binding of nitric oxide in the CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2 may represent a new nitric oxide signaling mode in cells.

2016 ◽  
Vol 55 (18) ◽  
pp. 9383-9392 ◽  
Author(s):  
Shou-Cheng Wu ◽  
Chung-Yen Lu ◽  
Yi-Lin Chen ◽  
Feng-Chun Lo ◽  
Ting-Yin Wang ◽  
...  

1998 ◽  
Vol 25 ◽  
pp. S63
Author(s):  
Andrei M. Komarov ◽  
I. Tong Mak ◽  
William B. Weglicki

1998 ◽  
Vol 111 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Yong G. Wang ◽  
Christine E. Rechenmacher ◽  
Stephen L. Lipsius

A perforated-patch whole-cell recording method was used to determine whether nitric oxide signaling participates in acetylcholine (ACh)-induced regulation of basal L-type Ca2+ current (ICa,L) in cat atrial myocytes. Exposure to 1 μM ACh for 2 min inhibited basal ICa,L (−21 ± 3%), and withdrawal of ACh elicited rebound stimulation of ICa,L above control (80 ± 13%) (n = 23). Stimulation of ICa,L elicited by withdrawal of ACh (but not ACh-induced inhibition of ICa,L) was blocked by either 50 μM hemoglobin; 30 μM ODQ or 10 μM methylene blue, inhibitors of soluble guanylate cyclase; 10 μM W-7, a calmodulin inhibitor; or 10 μM L-NIO, an inhibitor of constitutive NO synthase (NOS). In cells incubated in 5 mM l-arginine, ACh-induced rebound stimulation of ICa,L was enhanced compared with control responses. Histochemical assay (NADPH diaphorase) indicated that atrial myocytes express constitutive NOS. NO-donor, spermine/NO (SP/NO), >1 μM stimulated basal ICa,L. SP/NO-induced stimulation of ICa,L was inhibited by 50 μM hemoglobin, 30 μM ODQ, or 5 μM H-89, an inhibitor of PKA, and was unchanged by 50 μM MnTBAP, a peroxynitrite scavenger. When ICa,L was prestimulated by 10 μM milrinone, an inhibitor of cGMP-inhibited phosphodiesterase (type III) activity, SP/NO failed to further increase ICa,L. In cells incubated in pertussis toxin (3.4 μg/ml for 6 h; 36°C), ACh failed to affect ICa,L, but 100 μM SP/NO or 10 μM milrinone still increased basal ICa,L. These results indicate that in cat atrial myocytes NO signaling mediates stimulation of ICa,L elicited by withdrawal of ACh but not ACh-induced inhibition of basal ICa,L. NO activates cGMP-induced inhibition of phosphodiesterase (type III) activity. Upon withdrawal of ACh, this mechanism allows cAMP to recover to levels above control, thereby stimulating ICa,L. Pertussis toxin–sensitive G-proteins couple M2 muscarinic receptors to NO signaling. NO-mediated stimulation of ICa,L elicited by withdrawal of ACh may be an important mechanism that rapidly restores cardiac pacemaker and contractile functions after cholinergic suppression of atrial activity.


BIOPHYSICS ◽  
2008 ◽  
Vol 53 (5) ◽  
pp. 442-447
Author(s):  
M. I. Remizova ◽  
N. I. Kochetygov ◽  
K. A. Gerbut ◽  
A. F. Vanin

Sign in / Sign up

Export Citation Format

Share Document