multidrug resistance protein 1
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 37)

H-INDEX

51
(FIVE YEARS 2)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12594
Author(s):  
Vivian Osei Poku ◽  
Surtaj Hussain Iram

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.


Author(s):  
Weilin Zeng ◽  
Hui Zhao ◽  
Wei Zhao ◽  
Qi Yang ◽  
Xinxin Li ◽  
...  

Drug resistance in Plasmodium vivax may pose a challenge to malaria elimination. Previous studies have found that P. vivax has a decreased sensitivity to antimalarial drugs in some areas of the Greater Mekong Sub-region. This study aims to investigate the ex vivo drug susceptibilities of P. vivax isolates from the China–Myanmar border and genetic variations of resistance-related genes. A total of 46 P. vivax clinical isolates were assessed for ex vivo susceptibility to seven antimalarial drugs using the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, artesunate, and dihydroartemisinin from 46 parasite isolates were 96.48, 1.95, and 1.63 nM, respectively, while the medians of IC50 values for piperaquine, pyronaridine, mefloquine, and quinine from 39 parasite isolates were 19.60, 15.53, 16.38, and 26.04 nM, respectively. Sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvmrp1 (P. vivax multidrug resistance protein 1), pvdhfr (P. vivax dihydrofolate reductase), and pvdhps (P. vivax dihydropteroate synthase) were determined by PCR and sequencing. Pvmdr1 had 13 non-synonymous substitutions, of which, T908S and T958M were fixed, G698S (97.8%) and F1076L (93.5%) were highly prevalent, and other substitutions had relatively low prevalences. Pvmrp1 had three non-synonymous substitutions, with Y1393D being fixed, G1419A approaching fixation (97.8%), and V1478I being rare (2.2%). Several pvdhfr and pvdhps mutations were relatively frequent in the studied parasite population. The pvmdr1 G698S substitution was associated with a reduced sensitivity to chloroquine, artesunate, and dihydroartemisinin. This study suggests the possible emergence of P. vivax isolates resistant to certain antimalarial drugs at the China–Myanmar border, which demands continuous surveillance for drug resistance.


2021 ◽  
Vol 22 (18) ◽  
pp. 9710
Author(s):  
Gwenaëlle Conseil ◽  
Susan P. C. Cole

ABCC1 (human multidrug resistance protein 1 (hMRP1)) is an ATP-binding cassette transporter which effluxes xeno- and endobiotic organic anions and confers multidrug resistance through active drug efflux. The 17 transmembrane α-helices of hMRP1 are distributed among three membrane spanning domains (MSD0, 1, 2) with MSD1,2 each followed by a nucleotide binding domain to form the 4-domain core structure. Eight conserved residues in the first cytoplasmic loop (CL4) of MSD1 in the descending α-helix (Gly392, Tyr404, Arg405), the perpendicular coupling helix (Asn412, Arg415, Lys416), and the ascending α-helix (Glu422, Phe434) were targeted for mutagenesis. Mutants with both alanine and same charge substitutions of the coupling helix residues were expressed in HEK cells at wild-type hMRP1 levels and their transport activity was only moderately compromised. In contrast, mutants of the flanking amino acids (G392I, Y404A, R405A/K, E422A/D, and F434Y) were very poorly expressed although Y404F, E422D, and F434A were readily expressed and transport competent. Modeling analyses indicated that Glu422 and Arg615 could form an ion pair that might stabilize transporter expression. However, this was not supported by exchange mutations E422R/R615E which failed to improve hMRP1 levels. Additional structures accompanied by rigorous biochemical validations are needed to better understand the bonding interactions crucial for stable hMRP1 expression.


2021 ◽  
Author(s):  
Peter Hodoameda

The use of molecular markers of resistance to monitor the emergence, and the spread of parasite resistance to antimalarial drugs is a very effective way of monitoring antimalarial drug resistance. The identification and validation of molecular markers have boosted our confidence in using these tools to monitor resistance. For example, P. falciparum chloroquine resistance transporter (PfCRT), P. falciparum multidrug resistance protein 1 (PfMDR1), P. falciparum multidrug kelch 13 (pfk13), have been identified as molecular markers of resistance to chloroquine, lumefantrine, and artemisinin respectively. The mechanism of resistance to antimalarial drugs is mostly by; (1) undergoing mutations in the parasite genome, leading to expelling the drug from the digestive vacuole, or (2) loss of binding affinity between the drug and its target. Increased copy number in the pfmdr1 gene also leads to resistance to antimalarial drugs. The major cause of the widespread chloroquine and sulfadoxine-pyrimethamine resistance globally is the spread of parasites resistant to these drugs from Southeast Asia to Africa, the Pacific, and South America. Only a few mutations in the parasite genome lead to resistance to chloroquine and sulfadoxine-pyrimethamine arising from indigenous parasites in Africa, Pacific, and South America.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuval Bin Kanner ◽  
Assaf Ganoth ◽  
Yossi Tsfadia

AbstractDynamic conformational changes play a major role in the function of proteins, including the ATP-Binding Cassette (ABC) transporters. Multidrug Resistance Protein 1 (MRP1) is an ABC exporter that protects cells from toxic molecules. Overexpression of MRP1 has been shown to confer Multidrug Resistance (MDR), a phenomenon in which cancer cells are capable to defend themselves against a broad variety of drugs. In this study, we used varied computational techniques to explore the unique F583A mutation that is known to essentially lock the transporter in a low-affinity solute binding state. We demonstrate how macro-scale conformational changes affect MRP1’s stability and dynamics, and how these changes correspond to micro-scale structural perturbations in helices 10–11 and the nucleotide-binding domains (NBDs) of the protein in regions known to be crucial for its ATPase activity. We demonstrate how a single substitution of an outward-facing aromatic amino acid causes a long-range allosteric effect that propagates across the membrane, ranging from the extracellular ECL5 loop to the cytoplasmic NBD2 over a distance of nearly 75 Å, leaving the protein in a non-functional state, and provide the putative allosteric pathway. The identified allosteric structural pathway is not only in agreement with experimental data but enhances our mechanical understanding of MRP1, thereby facilitating the rational design of chemosensitizers toward the success of chemotherapy treatments.


2021 ◽  
Author(s):  
Yuval Bin Kanner ◽  
Assaf Ganoth ◽  
Yossi Tsfadia

Abstract Dynamic conformational changes play a major role in the function of proteins, including the ATP-Binding Cassette (ABC) transporters. Multidrug Resistance Protein 1 (MRP1) is an ABC exporter that protects tissues from toxic molecules. Overexpression of MRP1 has been shown to confer Multidrug Resistance (MDR), a phenomenon in which cancer cells are capable to defend themselves against a broad variety of drugs. Despite an increasing number of structures of MRP1, including a relatively new bovine cryo-EM structure, the accurate molecular details for its drug extrusion mechanism remain vague. In this study, we used varied computational techniques to explore the unique F583A mutation that is known to essentially lock the transporter in a low-affinity solute binding state. We demonstrate how macro-scale conformational changes affect MRP1’s stability and dynamics, and how these changes correspond to micro-scale structural perturbations in helices 10–11 and the nucleotide-binding domains (NBDs) of the protein in regions known to be crucial for its ATPase activity. We demonstrate how a single substitution of an outward-facing aromatic amino acid causes a long-range allosteric effect that propagates across the membrane, ranging from the extracellular ECL5 loop to the cytoplasmic NBD2 over a distance of nearly 75 Å, leaving the protein in a non-functional state, and provide the putative allosteric pathway. The identified allosteric structural pathway is not only in agreement with experimental data but enhances our mechanical understanding of MRP1, thereby facilitating the rational design of chemosensitizers toward the success of chemotherapy treatments.


Author(s):  
Mandeep Kaur ◽  
Tulika Gupta ◽  
Mili Gupta ◽  
Navneet Singla ◽  
Parampreet Singh ◽  
...  

About 30% of patients with epilepsy do not respond to anti-epileptic drugs leading to refractory seizures. The pathogenesis of drug-resistance in Mesial Temporal Lobe Epilepsy (MTLE) is not completely understood. Increased activity of drug-efflux transporters might be involved, resulting in subclinical concentrations of the drug at the target site. The major drug-efflux transporters are permeability glycoprotein (P-gp) and multidrug-resistance protein-1 (MRP-1). We have studied these two transporters in the sclerotic hippocampal tissues resected from the epilepsy surgery and compared their expression profile with the tissues resected from non-epileptic autopsy cases. Statistically significant over expression of both P-gp (p-value<0.0001) and MRP-1 (p-value 0.01) at gene and protein levels was found in the MTLE cases. The fold change of P-gp was more pronounced than MRP-1. Immunohistochemistry of patient group showed increased immunoreactivity of P-gp at blood brain barrier and increased reactivity of MRP-1 in parenchyma. The results were confirmed by confocal immunofluorescence microscopy. This suggested that P-gp in association with MRP-1 might be responsible for the multi-drug resistance in epilepsy.


Sign in / Sign up

Export Citation Format

Share Document