scholarly journals The Transcriptional Co-activators CREB-binding Protein (CBP) and p300 Play a Critical Role in Cardiac Hypertrophy That Is Dependent on Their Histone Acetyltransferase Activity

2002 ◽  
Vol 278 (9) ◽  
pp. 6838-6847 ◽  
Author(s):  
Rosalind J. Gusterson ◽  
Elen Jazrawi ◽  
Ian M. Adcock ◽  
David S. Latchman
2000 ◽  
Vol 20 (15) ◽  
pp. 5722-5735 ◽  
Author(s):  
Murray A. Cotter ◽  
Erle S. Robertson

ABSTRACT The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for EBV-dependent immortalization of human primary B lymphocytes. Genetic analysis indicated that amino acids 365 to 992 are important for EBV-mediated immortalization of B lymphocytes. We demonstrate that this region of EBNA3C critical for immortalization interacts with prothymosin alpha (ProTα), a cellular protein previously identified to be important for cell division and proliferation. This interaction maps to a region downstream of amino acid 365 known to be involved in transcription regulation and critical for EBV-mediated transformation of primary B lymphocytes. Additionally, we show that EBNA3C also interacts with p300, a cellular acetyltransferase. This interaction suggests a possible role in regulation of histone acetylation and chromatin remodeling. An increase in histone acetylation was observed in EBV-transformed lymphoblastoid cell lines, which is consistent with increased cellular gene expression. These cells express the entire repertoire of latent nuclear antigens, including EBNA3C. Expression of EBNA3C in cells with increased acetyltransferase activity mediated by the EBV transactivator EBNA2 results in down-modulation of this activity in a dose-responsive manner. The interactions of EBNA3C with ProTα and p300 provide new evidence implicating this essential EBV protein EBNA3C in modulating the acetylation of cellular factors, including histones. Hence, EBNA3C plays a critical role in balancing cellular transcriptional events by linking the biological property of mediating inhibition of EBNA2 transcription activation and the observed histone acetyltransferase activity, thereby orchestrating immortalization of EBV-infected cells.


1998 ◽  
Vol 18 (4) ◽  
pp. 2218-2229 ◽  
Author(s):  
Cheng Yang ◽  
Linda H. Shapiro ◽  
Morris Rivera ◽  
Alok Kumar ◽  
Paul K. Brindle

ABSTRACT The Ets-1 transcription factor plays a critical role in cell growth and development, but the means by which it activates transcription are still unclear (J. C. Bories, D. M. Willerford, D. Grevin, L. Davidson, A. Camus, P. Martin, D. Stehelin, F. W. Alt, and J. C. Borles, Nature 377:635–638, 1995; N. Muthusamy, K. Barton, and J. M. Leiden, Nature 377:639–642, 1995). Here we show that Ets-1 binds the transcriptional coactivators CREB binding protein (CBP) and the related p300 protein (together referred to as CBP/p300) and that this interaction is required for specific Ets-1 transactivation functions. The Ets-1- and c-Myb-dependent aminopeptidase N (CD13/APN) promoter and an Ets-1-dependent artificial promoter were repressed by adenovirus E1A, a CBP/p300-specific inhibitor. Furthermore, Ets-1 activity was potentiated by CBP and p300 overexpression. The transactivation function of Ets-1 correlated with its ability to bind an N-terminal cysteine- and histidine-rich region spanning CBP residues 313 to 452. Ets-1 also bound a second cysteine- and histidine-rich region of CBP, between residues 1449 and 1892. Both Ets-1 and CBP/p300 formed a stable immunoprecipitable nuclear complex, independent of DNA binding. This Ets-1–CBP/p300 immunocomplex possessed histone acetyltransferase activity, consistent with previous findings that CBP/p300 is associated with such enzyme activity. Our results indicate that CBP/p300 may mediate antagonistic and synergistic interactions between Ets-1 and other transcription factors that use CBP/p300 as a coactivator, including c-Myb and AP-1.


1998 ◽  
Vol 18 (6) ◽  
pp. 3596-3603 ◽  
Author(s):  
Peter B. Dallas ◽  
Ian Wayne Cheney ◽  
Da-Wei Liao ◽  
Valerie Bowrin ◽  
Whitney Byam ◽  
...  

ABSTRACT p300 and the closely related CREB binding protein (CBP) are transcriptional adaptors that are present in intracellular complexes with TATA binding protein (TBP) and bind to upstream activators including p53 and nuclear hormone receptors. They have intrinsic and associated histone acetyltransferase activity, suggesting that chromatin modification is an essential part of their role in regulating transcription. Detailed characterization of a panel of antibodies raised against p300/CBP has revealed the existence of a 270-kDa cellular protein, p270, distinct from p300 and CBP but sharing at least two independent epitopes with p300. The subset of p300/CBP-derived antibodies that cross-reacts with p270 consistently coprecipitates a series a cellular proteins with relative molecular masses ranging from 44 to 190 kDa. Purification and analysis of various proteins in this group reveals that they are components of the human SWI/SNF complex and that p270 is an integral member of this complex.


Sign in / Sign up

Export Citation Format

Share Document