core histones
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 60)

H-INDEX

56
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Terri D. Bryson ◽  
Pablo De Ioannes ◽  
Marco Igor Valencia-Sanchez ◽  
Jorja G Henikoff ◽  
Paul B. Talbert ◽  
...  

The doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap DNA to form remarkably similar nucleosomes. By releasing Marseillevirus chromatin from virions into solution and performing genome-wide nuclease digestion and chemical cleavage assays, we find that the higher-order organization of Marseillevirus chromatin differs greatly from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions, without linker DNA or phasing along genes. Likewise, we observe that most nucleosomes reconstituted onto 3-copy tandem repeats of a nucleosome positioning sequence are tightly packed and fully wrapped. We also document repeat generation and instability during viral passage in amoeboid culture. Dense promiscuous packing of fully wrapped nucleosomes rather than 'beads-on-a-string' with genic punctuation suggests a viral genome protection function for doublet histones.


2022 ◽  
Author(s):  
Pedro Buzon ◽  
Alejandro Velazquez-Cruz ◽  
Katiuska Gonzalez-Arzola ◽  
Antonio Diaz-Quintana ◽  
Irene Diaz-Moreno ◽  
...  

Chromatin homeostasis mediates some of the most fundamental processes in the eukaryotic cell. In this regard, histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. However, the dynamic nature of these processes has severely impeded their characterization at the molecular level. Here we apply single-molecule probing by fluorescence optical tweezers to follow histone chaperone dynamics in real-time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1, representing the two most common histone chaperone folds, were examined using both nucleosomes and isolated core histones. We show that these chaperones present binding specificity for partially dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, we reveal that cytochrome c inhibition of histone chaperones is coupled to chaperone accumulation on DNA-bound histones. Our single-molecule approach shows that despite the drastically different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.


2021 ◽  
pp. 1-14
Author(s):  
Gunnar Pejler ◽  
Sultan Alanazi ◽  
Mirjana Grujic ◽  
Jeremy Adler ◽  
Anna-Karin Olsson ◽  
...  

Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sultan Alanazi ◽  
Fabio Rabelo Melo ◽  
Gunnar Pejler

Mast cells are immune cells that store large amounts of mast cell-restricted proteases in their secretory granules, including tryptase, chymase and carboxypeptidase A3. In mouse mast cells, it has been shown that tryptase, in addition to its canonical location in secretory granules, can be found in the nuclear compartment where it can impact on core histones. Here we asked whether tryptase can execute core histone processing in human mast cell leukemia cells, and whether tryptase thereby can affect the epigenetic modification of core histones. Our findings reveal that triggering of cell death in HMC-1 mast cell leukemia cells is associated with extensive cleavage of core histone 3 (H3) and more restricted cleavage of H2B. Tryptase inhibition caused a complete blockade of such processing. Our data also show that HMC-1 cell death was associated with a major reduction of several epigenetic histone marks, including H3 lysine-4-mono-methylation (H3K4me1), H3K9me2, H3 serine-10-phosphorylation (H3S10p) and H2B lysine-16-acetylation (H2BK16ac), and that tryptase inhibition reverses the effect of cell death on these epigenetic marks. Further, we show that tryptase is present in the nucleus of both viable and dying mast cell leukemia cells. In line with a role for tryptase in regulating nuclear events, tryptase inhibition caused increased proliferation of the mast cell leukemia cells. Altogether, the present study emphasizes a novel principle for how epigenetic modification of core histones is regulated, and provides novel insight into the biological function of human mast cell tryptase.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Isabel Cristina Vélez-Bermúdez ◽  
Wolfgang Schmidt

Abstract Background Covalent modifications of core histones govern downstream DNA-templated processes such as transcription by altering chromatin structure and function. Previously, we reported that the plant homeodomain protein ALFIN-LIKE 6 (AL6), a bona fide histone reader that preferentially binds trimethylated lysin 4 on histone 3 (H3K4me3), is critical for recalibration of cellular phosphate (Pi) homeostasis and root hair elongation under Pi-deficient conditions. Results Here, we demonstrate that AL6 is also involved in the response of Arabidopsis seedlings to jasmonic acid (JA) during skotomorphogenesis, possibly by modulating chromatin dynamics that affect the transcriptional regulation of JA-responsive genes. Dark-grown al6 seedlings showed a compromised reduction in hypocotyl elongation upon exogenously supplied JA, a response that was calibrated by the availability of Pi in the growth medium. A comparison of protein profiles between wild-type and al6 mutant seedlings using a quantitative Chromatin Enrichment for Proteomics (ChEP) approach, that we modified for plant tissue and designated ChEP-P (ChEP in Plants), yielded a comprehensive suite of chromatin-associated proteins and candidates that may be causative for the mutant phenotype. Conclusions Altered abundance of proteins involved in chromatin organization in al6 seedlings suggests a role of AL6 in coordinating the deposition of histone variants upon perception of internal or environmental stimuli. Our study shows that ChEP-P is well suited to gain holistic insights into chromatin-related processes in plants. Data are available via ProteomeXchange with identifier PXD026541.


2021 ◽  
Author(s):  
Alonso J Pardal ◽  
Andrew J Bowman

Core histones package chromosomal DNA and regulate genomic transactions, with their import and deposition involving a dedicated repertoire of molecular chaperones. Histones H3 and H4 have been predominantly characterised as obligate heterodimers, however, recent findings have alluded to the existence of a significant pool of monomeric histone H3 in the nucleoplasm. Using a combination of in vitro and in vivo experiments, here we show that monomeric H3 and H4 use an Importin 5 (Imp5) dependent pathway for their nuclear import, distinct from Importin 4 (Imp4) previously described for H3-H4 dimers. Using mutants that disrupt the histone fold, we show monomeric H3 loses its interaction with Imp4, but retains interactions with Imp5 and the chaperone NASP. H4 monomeric mutants similarly bind Imp5 and not Imp4, however, they lose interaction with NASP, retaining their interaction with the HAT1-RBBP7 complex instead. In vitro experiments revealed that Imp5 and NASP are mutually exclusive in their binding, suggesting a facilitated hand-off mechanism. Furthermore, new H3 accumulates rapidly in a NASP-bound complex after nuclear translocation. NASP can assemble into three distinct co-chaperoning complexes, including a novel complex containing NASP, H3 and the putative ubiquitin ligase UBR7, a NASP-H3-H4-RBBP7 subcomplex and the previously characterised NASP-H3-H4-ASF1-HAT1-RBBP7 multi-chaperoning complex. Here we propose an alternative import pathway and folding mechanism for monomeric H3 and H4 that involves Imp5, rather than Imp4, and hands off to nuclear chaperones NASP, RBBP7 and HAT1.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Axel Poulet ◽  
Laxmi Narayan Mishra ◽  
Stéphane Téletchéa ◽  
Jeffrey J Hayes ◽  
Yannick Jacob ◽  
...  

Abstract Physarum polycephalum belongs to Mycetozoans, a phylogenetic clade apart from the animal, plant and fungus kingdoms. Histones are nuclear proteins involved in genome organization and regulation and are among the most evolutionary conserved proteins within eukaryotes. Therefore, this raises the question of their conservation in Physarum and the position of this organism within the eukaryotic phylogenic tree based on histone sequences. We carried out a comprehensive study of histones in Physarum polycephalum using genomic, transcriptomic and molecular data. Our results allowed to identify the different isoforms of the core histones H2A, H2B, H3 and H4 which exhibit strong conservation of amino acid residues previously identified as subject to post-translational modifications. Furthermore, we also identified the linker histone H1, the most divergent histone, and characterized a large number of its PTMs by mass spectrometry. We also performed an in-depth investigation of histone genes and transcript structures. Histone proteins are highly conserved in Physarum and their characterization will contribute to a better understanding of the polyphyletic Mycetozoan group. Our data reinforce that P. polycephalum is evolutionary closer to animals than plants and located at the crown of the eukaryotic tree. Our study provides new insights in the evolutionary history of Physarum and eukaryote lineages.


2021 ◽  
Author(s):  
Pravrutha Raman ◽  
Callie Rominger ◽  
Janet M. Young ◽  
Antoine Molaro ◽  
Toshio Tsukiyama ◽  
...  

Histones and their post-translational modifications facilitate diverse chromatin functions in eukaryotes. Core histones (H2A, H2B, H3, and H4) package genomes after DNA replication. In contrast, variant histones promote specialized chromatin functions, including DNA repair, genome stability, and epigenetic inheritance. Previous studies have identified only a few H2B variants in animals; their roles and evolutionary origins remain largely unknown. Here, using phylogenomic analyses, we reveal the presence of five H2B variants broadly present in mammalian genomes. In addition to three previously described variants (H2B.1, subH2B, and H2B.W), we identify and describe two new variants: H2B.L and H2B.N. Four of these five H2B variants originated in mammals, whereas H2B.L arose prior to the last common ancestor of bony vertebrates. We find that though mammalian H2B variants are subject to high gene turnover, most are broadly retained in mammals, including humans. Despite an overall signature of purifying selection, H2B variants evolve more rapidly than core H2B with considerable divergence in sequence and length. All five H2B variants are expressed in the germline. H2B.L and H2B.N are predominantly expressed in oocytes, an atypical expression site for mammalian histone variants. Our findings suggest that H2B variants likely encode potentially redundant but vital functions via unusual chromatin packaging or non-chromatin functions in mammalian germline cells. Our discovery of novel histone variants highlights the advantages of comprehensive phylogenomic analyses and provides unique opportunities to study how innovations in chromatin function evolve.


Reproduction ◽  
2021 ◽  
Author(s):  
Sharvari S Deshpande ◽  
Nemani Harishankar ◽  
Nafisa Huseni Balasinor

Obesity, an established risk factor for male subfertility or infertility, is primarily due to genetic and environmental causes. Our earlier studies have shown differential effects of high fat diet-induced- (DIO) and genetically inherited- (GIO) obesity on DNA methylation in male germline and its subsequent effect on fertility. Here, we hypothesized that the effects of DIO and GIO on histone modifications in male germline could also contribute to fertility defects. We observed that DIO affected both active (H3K4me3, H3ac, and H4ac) and repressive (H3K9me3 and H3K27me3) histone marks in testis and their cell types, whereas GIO solely altered acetylated histones. This correlated with deregulation of histone-modifying enzymes in testis of both obese groups. Further, we also observed a decrease in chromatin remodelers in testis of DIO group, which were increased in GIO group. Besides, there was an increase in core histones and a decrease in histone marks along with protamine deficiency in spermatozoa of DIO group, whereas only H3K4me3 levels were increased in spermatozoa of GIO group. Moreover, we observed alterations in the expression and enrichment patterns of a few developmental genes harbored by the active histone mark in resorbed embryos sired by the DIO rats. Together these epigenetic defects in male germline could alter sperm quality and cause fertility defects in these obese groups. Differential changes in two obese groups could also be attributed to differences in their pathophysiological variations. Our study highlights epigenetic differences between DIO and GIO in male germline and its subsequent impact on male fertility.


2021 ◽  
Author(s):  
Sneha Jos ◽  
Hemanga Gogoi ◽  
Thazhe Kootteri Prasad ◽  
Manjunath A. Hurakadli ◽  
Neelagandan Kamariah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document