scholarly journals The NS5A Protein of Hepatitis C Virus Is a Zinc Metalloprotein

2004 ◽  
Vol 279 (47) ◽  
pp. 48576-48587 ◽  
Author(s):  
Timothy L. Tellinghuisen ◽  
Joseph Marcotrigiano ◽  
Alexander E. Gorbalenya ◽  
Charles M. Rice
2015 ◽  
Vol 90 (6) ◽  
pp. 2794-2805 ◽  
Author(s):  
Giao V. Q. Tran ◽  
Trang T. D. Luong ◽  
Eun-Mee Park ◽  
Jong-Wook Kim ◽  
Jae-Woong Choi ◽  
...  

ABSTRACTHepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation.IMPORTANCESorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV.


2006 ◽  
Vol 196 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Ankur Goyal ◽  
Wolf P. Hofmann ◽  
Eva Hermann ◽  
Stella Traver ◽  
Syed S. Hissar ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shanshan Wang ◽  
Yongzhi Chen ◽  
Chunfeng Li ◽  
Yaoxing Wu ◽  
Lei Guo ◽  
...  

2018 ◽  
Vol 92 (13) ◽  
Author(s):  
Chieko Matsui ◽  
Lin Deng ◽  
Nanae Minami ◽  
Takayuki Abe ◽  
Kazuhiko Koike ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA. IMPORTANCE Many viruses use a protein degradation system, such as the ubiquitin-proteasome pathway or the autophagy pathway, for facilitating viral propagation and viral pathogenesis. We investigated the mechanistic details of the selective lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) induced by hepatitis C virus (HCV) NS5A protein. Using site-directed mutagenesis, we demonstrated that HNF-1α contains a pentapeptide chaperone-mediated autophagy (CMA)-targeting motif within the POU-specific domain of HNF-1α. The CMA-targeting motif is important for the association with HSC70. LAMP-2A is required for degradation of HNF-1α caused by NS5A. We propose that HCV NS5A interacts with HSC70, a key component of the CMA machinery, and recruits HSC70 to HNF-1α to target HNF-1α for CMA-mediated lysosomal degradation, thereby facilitating HCV pathogenesis. We discovered a role of HCV NS5A in CMA-dependent degradation of HNF-1α. Our results may lead to a better understanding of the role of CMA in the pathogenesis of HCV.


2016 ◽  
Vol 74 ◽  
pp. 19-25 ◽  
Author(s):  
Odile Petsaris ◽  
Sophie Vallet ◽  
Hélène Le Guillou-Guillemette ◽  
Pascal Veillon ◽  
Stéphanie Gouriou ◽  
...  

Biochemistry ◽  
2017 ◽  
Vol 56 (24) ◽  
pp. 3029-3048 ◽  
Author(s):  
Aurelie Badillo ◽  
Véronique Receveur-Brechot ◽  
Stéphane Sarrazin ◽  
François-Xavier Cantrelle ◽  
Frédéric Delolme ◽  
...  

Virology ◽  
2003 ◽  
Vol 306 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Asish K Ghosh ◽  
Mainak Majumder ◽  
Robert Steele ◽  
Ranjit Ray ◽  
Ratna B Ray

2015 ◽  
Vol 59 (8) ◽  
pp. 466-476 ◽  
Author(s):  
Imelda Rosalyn Sianipar ◽  
Chieko Matsui ◽  
Nanae Minami ◽  
Xiang Gan ◽  
Lin Deng ◽  
...  

2001 ◽  
Vol 75 (13) ◽  
pp. 6095-6106 ◽  
Author(s):  
Stephen J. Polyak ◽  
Khalid S. A. Khabar ◽  
Denise M. Paschal ◽  
Heather J. Ezelle ◽  
Gilles Duverlie ◽  
...  

ABSTRACT Hepatitis C virus (HCV), a major cause of liver disease worldwide, is frequently resistant to the antiviral alpha interferon (IFN). The HCV nonstructural 5A (NS5A) protein has been implicated in HCV antiviral resistance in many studies. NS5A antagonizes the IFN antiviral response in vitro, and one mechanism is via inhibition of a key IFN-induced enzyme, the double-stranded-RNA-activated protein kinase (PKR). In the present study we determined if NS5A uses other strategies to subvert the IFN system. Expression of full-length NS5A proteins from patients who exhibited a complete response (FL-NS5A-CR) or were nonresponsive (FL-NS5A-NR) to IFN therapy in HeLa cells had no effect on IFN induction of IFN-stimulated gene factor 3 (ISGF-3). Expression of mutant NS5A proteins lacking 110 (NS5A-ΔN110), 222 (NS5A-ΔN222), and 334 amino-terminal amino acids and mutants lacking 117 and 230 carboxy-terminal amino acids also had no effect on ISGF-3 induction by IFN. Expression of FL-NS5A-CR and FL-NS5A-NR did not affect IFN-induced STAT-1 tyrosine phosphorylation or upregulation of PKR and major histocompatibility complex class I antigens. However, NS5A expression in human cells induced interleukin 8 (IL-8) mRNA and protein, and this effect correlated with inhibition of the antiviral effects of IFN in an in vitro bioassay. NS5A induced transcription of a reporter gene driven by the IL-8 promoter, and the first 133 bp of the IL-8 promoter made up the minimal domain required for NS5A transactivation. NS5A-ΔN110 and NS5A-ΔN222 stimulated the IL-8 promoter to higher levels than did the full-length NS5A protein, and this correlated with increased nuclear localization of the proteins. Additional mutagenesis of the IL-8 promoter suggested that NF-κB and AP-1 were important in NS5A-ΔN222 transactivation in the presence of tumor necrosis factor alpha and that NF–IL-6 was inhibitory to this process. This study suggests that NS5A inhibits the antiviral actions of IFN by at least two mechanisms and provides the first evidence for a biological effect of the transcriptional activity of the NS5A protein. During HCV infection, viral proteins may induce chemokines that contribute to HCV antiviral resistance and pathogenesis.


2008 ◽  
Vol 283 (43) ◽  
pp. 29396-29404 ◽  
Author(s):  
Shun-Chi Wu ◽  
Shin C. Chang ◽  
Hung-Yi Wu ◽  
Pei-Ju Liao ◽  
Ming-Fu Chang

Sign in / Sign up

Export Citation Format

Share Document