scholarly journals Tetrameric Oligomerization Mediates Transcriptional Repression by the BRCA1-dependent Kruppel-associated Box-Zinc Finger Protein ZBRK1

2004 ◽  
Vol 279 (53) ◽  
pp. 55153-55160 ◽  
Author(s):  
Wei Tan ◽  
Seokjoong Kim ◽  
Thomas G. Boyer
2006 ◽  
Vol 26 (22) ◽  
pp. 8623-8638 ◽  
Author(s):  
Smitha P. Sripathy ◽  
Jessica Stevens ◽  
David C. Schultz

ABSTRACT KAP1/TIF1β is proposed to be a universal corepressor protein for the KRAB zinc finger protein (KRAB-zfp) superfamily of transcriptional repressors. To characterize the role of KAP1 and KAP1-interacting proteins in transcriptional repression, we investigated the regulation of stably integrated reporter transgenes by hormone-responsive KRAB and KAP1 repressor proteins. Here, we demonstrate that depletion of endogenous KAP1 levels by small interfering RNA (siRNA) significantly inhibited KRAB-mediated transcriptional repression of a chromatin template. Similarly, reduction in cellular levels of HP1α/β/γ and SETDB1 by siRNA attenuated KRAB-KAP1 repression. We also found that direct tethering of KAP1 to DNA was sufficient to repress transcription of an integrated transgene. This activity is absolutely dependent upon the interaction of KAP1 with HP1 and on an intact PHD finger and bromodomain of KAP1, suggesting that these domains function cooperatively in transcriptional corepression. The achievement of the repressed state by wild-type KAP1 involves decreased recruitment of RNA polymerase II, reduced levels of histone H3 K9 acetylation and H3K4 methylation, an increase in histone occupancy, enrichment of trimethyl histone H3K9, H3K36, and histone H4K20, and HP1 deposition at proximal regulatory sequences of the transgene. A KAP1 protein containing a mutation of the HP1 binding domain failed to induce any change in the histone modifications associated with DNA sequences of the transgene, implying that HP1-directed nuclear compartmentalization is required for transcriptional repression by the KRAB/KAP1 repression complex. The combination of these data suggests that KAP1 functions to coordinate activities that dynamically regulate changes in histone modifications and deposition of HP1 to establish a de novo microenvironment of heterochromatin, which is required for repression of gene transcription by KRAB-zfps.


2001 ◽  
Vol 276 (46) ◽  
pp. 42632-42638 ◽  
Author(s):  
Masayuki Sekimata ◽  
Atsushi Takahashi ◽  
Akiko Murakami-Sekimata ◽  
Yoshimi Homma

PLoS ONE ◽  
2010 ◽  
Vol 5 (8) ◽  
pp. e12373 ◽  
Author(s):  
Masamitsu Negishi ◽  
Atsunori Saraya ◽  
Shinobu Mochizuki ◽  
Kristian Helin ◽  
Haruhiko Koseki ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6296
Author(s):  
Elena Cesaro ◽  
Angelo Lupo ◽  
Roberta Rapuano ◽  
Arianna Pastore ◽  
Michela Grosso ◽  
...  

The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein–protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1–3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.


1999 ◽  
Vol 274 (27) ◽  
pp. 19498-19506 ◽  
Author(s):  
Marc W. Izzo ◽  
Gordon D. Strachan ◽  
Matthew C. Stubbs ◽  
David J. Hall

Sign in / Sign up

Export Citation Format

Share Document