scholarly journals Hsk1-Dfp1/Him1, the Cdc7-Dbf4 Kinase inSchizosaccharomyces pombe, Associates with Swi1, a Component of the Replication Fork Protection Complex

2005 ◽  
Vol 280 (52) ◽  
pp. 42536-42542 ◽  
Author(s):  
Seiji Matsumoto ◽  
Keiko Ogino ◽  
Eishi Noguchi ◽  
Paul Russell ◽  
Hisao Masai
PLoS Genetics ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. e1003213 ◽  
Author(s):  
Laura C. Roseaulin ◽  
Chiaki Noguchi ◽  
Esteban Martinez ◽  
Melissa A. Ziegler ◽  
Takashi Toda ◽  
...  

2016 ◽  
Vol 113 (26) ◽  
pp. E3639-E3648 ◽  
Author(s):  
Deepak Bastia ◽  
Pankaj Srivastava ◽  
Shamsu Zaman ◽  
Malay Choudhury ◽  
Bidyut K. Mohanty ◽  
...  

Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1–Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2–7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2–7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2–7 had to be phosphorylated for binding to phospho-Tof1–Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2–7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1–Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1–Ter complex.


2017 ◽  
Vol 28 (22) ◽  
pp. 2978-2997 ◽  
Author(s):  
Wilber Escorcia ◽  
Susan L. Forsburg

The replication fork protection complex (FPC) coordinates multiple processes that are crucial for unimpeded passage of the replisome through various barriers and difficult to replicate areas of the genome. We examine the function of Swi1 and Swi3, fission yeast’s primary FPC components, to elucidate how replication fork stability contributes to DNA integrity in meiosis. We report that destabilization of the FPC results in reduced spore viability, delayed replication, changes in recombination, and chromosome missegregation in meiosis I and meiosis II. These phenotypes are linked to accumulation and persistence of DNA damage markers in meiosis and to problems with cohesion stability at the centromere. These findings reveal an important connection between meiotic replication fork stability and chromosome segregation, two processes with major implications to human reproductive health.


2015 ◽  
Vol 44 (2) ◽  
pp. 705-717 ◽  
Author(s):  
Federica Calì ◽  
Sanjay Kumar Bharti ◽  
Roberta Di Perna ◽  
Robert M. Brosh ◽  
Francesca M. Pisani

2004 ◽  
Vol 24 (19) ◽  
pp. 8342-8355 ◽  
Author(s):  
Eishi Noguchi ◽  
Chiaki Noguchi ◽  
W. Hayes McDonald ◽  
John R. Yates ◽  
Paul Russell

ABSTRACT Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3 +. The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Δ and swi3Δ mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Δ or swi3Δ cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.


2020 ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

ABSTRACTProtecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances TIM stability and its localization to replication forks, thereby aiding the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


2020 ◽  
Vol 78 (5) ◽  
pp. 926-940.e13 ◽  
Author(s):  
Domagoj Baretić ◽  
Michael Jenkyn-Bedford ◽  
Valentina Aria ◽  
Giuseppe Cannone ◽  
Mark Skehel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document