scholarly journals SDE2 Integrates into the TIMELESS-TIPIN Complex to Protect Stalled Replication Forks

2020 ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

ABSTRACTProtecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances TIM stability and its localization to replication forks, thereby aiding the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

Abstract Protecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances its stability, thereby aiding TIM localization to replication forks and the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


2011 ◽  
Vol 22 (13) ◽  
pp. 2396-2408 ◽  
Author(s):  
Jessica A. Vaisica ◽  
Anastasija Baryshnikova ◽  
Michael Costanzo ◽  
Charles Boone ◽  
Grant W. Brown

Mms1 and Mms22 form a Cul4Ddb1-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101Mms1/Mms22ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1—Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. e1003213 ◽  
Author(s):  
Laura C. Roseaulin ◽  
Chiaki Noguchi ◽  
Esteban Martinez ◽  
Melissa A. Ziegler ◽  
Takashi Toda ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3442 ◽  
Author(s):  
Shibani Mukherjee ◽  
Debapriya Sinha ◽  
Souparno Bhattacharya ◽  
Kalayarasan Srinivasan ◽  
Salim Abdisalaam ◽  
...  

Werner Syndrome (WS) is an autosomal recessive disorder characterized by the premature development of aging features. Individuals with WS also have a greater predisposition to rare cancers that are mesenchymal in origin. Werner Syndrome Protein (WRN), the protein mutated in WS, is unique among RecQ family proteins in that it possesses exonuclease and 3′ to 5′ helicase activities. WRN forms dynamic sub-complexes with different factors involved in DNA replication, recombination and repair. WRN binding partners either facilitate its DNA metabolic activities or utilize it to execute their specific functions. Furthermore, WRN is phosphorylated by multiple kinases, including Ataxia telangiectasia mutated, Ataxia telangiectasia and Rad3 related, c-Abl, Cyclin-dependent kinase 1 and DNA-dependent protein kinase catalytic subunit, in response to genotoxic stress. These post-translational modifications are critical for WRN to function properly in DNA repair, replication and recombination. Accumulating evidence suggests that WRN plays a crucial role in one or more genome stability maintenance pathways, through which it suppresses cancer and premature aging. Among its many functions, WRN helps in replication fork progression, facilitates the repair of stalled replication forks and DNA double-strand breaks associated with replication forks, and blocks nuclease-mediated excessive processing of replication forks. In this review, we specifically focus on human WRN’s contribution to replication fork processing for maintaining genome stability and suppressing premature aging. Understanding WRN’s molecular role in timely and faithful DNA replication will further advance our understanding of the pathophysiology of WS.


2019 ◽  
Vol 29 (7) ◽  
pp. 1083-1095 ◽  
Author(s):  
Maya Raghunandan ◽  
Jung Eun Yeo ◽  
Ryan Walter ◽  
Kai Saito ◽  
Adam J Harvey ◽  
...  

Abstract Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Specifically, the FA pathway functions to protect genome stability during DNA replication. The central FA pathway protein, FANCD2, locates to stalled replication forks and recruits homologous recombination (HR) factors such as CtBP interacting protein (CtIP) to promote replication fork restart while suppressing new origin firing. Here, we identify alpha-thalassemia retardation syndrome X-linked (ATRX) as a novel physical and functional interaction partner of FANCD2. ATRX is a chromatin remodeler that forms a complex with Death domain-associated protein 6 (DAXX) to deposit the histone variant H3.3 into specific genomic regions. Intriguingly, ATRX was recently implicated in replication fork recovery; however, the underlying mechanism(s) remained incompletely understood. Our findings demonstrate that ATRX forms a constitutive protein complex with FANCD2 and protects FANCD2 from proteasomal degradation. ATRX and FANCD2 localize to stalled replication forks where they cooperate to recruit CtIP and promote MRE11 exonuclease-dependent fork restart while suppressing the firing of new replication origins. Remarkably, replication restart requires the concerted histone H3 chaperone activities of ATRX/DAXX and FANCD2, demonstrating that coordinated histone H3 variant deposition is a crucial event during the reinitiation of replicative DNA synthesis. Lastly, ATRX also cooperates with FANCD2 to promote the HR-dependent repair of directly induced DNA double-stranded breaks. We propose that ATRX is a novel functional partner of FANCD2 to promote histone deposition-dependent HR mechanisms in S-phase.


Author(s):  
Sangin Kim ◽  
Nalae Kang ◽  
Su Hyung Park ◽  
James Wells ◽  
Taejoo Hwang ◽  
...  

Abstract R-loops are formed when replicative forks collide with the transcriptional machinery and can cause genomic instability. However, it is unclear how R-loops are regulated at transcription-replication conflict (TRC) sites and how replisome proteins are regulated to prevent R-loop formation or mediate R-loop tolerance. Here, we report that ATAD5, a PCNA unloader, plays dual functions to reduce R-loops both under normal and replication stress conditions. ATAD5 interacts with RNA helicases such as DDX1, DDX5, DDX21 and DHX9 and increases the abundance of these helicases at replication forks to facilitate R-loop resolution. Depletion of ATAD5 or ATAD5-interacting RNA helicases consistently increases R-loops during the S phase and reduces the replication rate, both of which are enhanced by replication stress. In addition to R-loop resolution, ATAD5 prevents the generation of new R-loops behind the replication forks by unloading PCNA which, otherwise, accumulates and persists on DNA, causing a collision with the transcription machinery. Depletion of ATAD5 reduces transcription rates due to PCNA accumulation. Consistent with the role of ATAD5 and RNA helicases in maintaining genomic integrity by regulating R-loops, the corresponding genes were mutated or downregulated in several human tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan Ellis ◽  
Jianmei Zhu ◽  
Mary K Yagle ◽  
Wei-Chih Yang ◽  
Jing Huang ◽  
...  

Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.


Sign in / Sign up

Export Citation Format

Share Document