fork protection complex
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shalini Aricthota ◽  
Devyani Haldar

In eukaryotes, paused replication forks are prone to collapse, which leads to genomic instability, a hallmark of cancer. Dbf4 Dependent Kinase (DDK)/Hsk1Cdc7 is a conserved replication initiator kinase with conflicting roles in replication stress response. Here, we show that fission yeast DDK/Hsk1 phosphorylates sirtuin, Hst4 upon replication stress at C-terminal serine residues. Phosphorylation of Hst4 by DDK marks it for degradation via the ubiquitin ligase SCFpof3. Phosphorylation defective hst4 mutant (4SA-hst4) displays defective recovery from replication stress, faulty fork restart, slow S-phase progression and decreased viability. The highly conserved Fork Protection Complex (FPC) stabilizes stalled replication forks. We found that the recruitment of FPC components, Swi1 and Mcl1 to the chromatin is compromised in the 4SA-hst4 mutant, although whole cell levels increased. These defects are dependent upon H3K56ac and independent of intra S-phase checkpoint activation. Finally, we show conservation of H3K56ac dependent regulation of Timeless, Tipin and And-1 in human cells. We propose that degradation of Hst4 via DDK increases H3K56ac, changing the chromatin state in the vicinity of stalled forks facilitating recruitment and function of FPC. Overall, this study identified a crucial role of DDK and FPC in the regulation of replication stress response with implications in cancer therapeutics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

Abstract Protecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances its stability, thereby aiding TIM localization to replication forks and the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


2020 ◽  
Vol 78 (5) ◽  
pp. 926-940.e13 ◽  
Author(s):  
Domagoj Baretić ◽  
Michael Jenkyn-Bedford ◽  
Valentina Aria ◽  
Giuseppe Cannone ◽  
Mark Skehel ◽  
...  

2020 ◽  
Vol 48 (12) ◽  
pp. 6996-7004 ◽  
Author(s):  
Daniel B Grabarczyk

Abstract The Tof1–Csm3 fork protection complex has a central role in the replisome—it promotes the progression of DNA replication forks and protects them when they stall, while also enabling cohesion establishment and checkpoint responses. Here, I present the crystal structure of the Tof1–Csm3 complex from Chaetomium thermophilum at 3.1 Å resolution. The structure reveals that both proteins together form an extended alpha helical repeat structure, which suggests a mechanical or scaffolding role for the complex. Expanding on this idea, I characterize a DNA interacting region and a cancer-associated Mrc1 binding site. This study provides the molecular basis for understanding the functions of the Tof1–Csm3 complex, its human orthologue the Timeless–Tipin complex and additionally the Drosophila circadian rhythm protein Timeless.


2020 ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

ABSTRACTProtecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances TIM stability and its localization to replication forks, thereby aiding the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


2020 ◽  
Author(s):  
Daniel B. Grabarczyk

AbstractThe Tof1-Csm3 fork protection complex has a central role in the replisome – it promotes the progression of DNA replication forks and protects them when they stall, while also enabling cohesion establishment and checkpoint responses. Here, I present the crystal structure of the Tof1-Csm3 complex from Chaetomium thermophilum at 3.1 Å resolution. The structure reveals that Tof1 is an extended alpha-helical repeat protein which is capped at its C-terminal end by Csm3, a small helical bundle protein. I also characterize the DNA binding properties of the complex and a cancer-associated peptide-binding site. This study provides the molecular basis for understanding the functions of the Tof1-Csm3 complex, its human orthologue the Timeless-Tipin complex and additionally the Drosophila circadian rhythm protein Timeless.


Author(s):  
Domagoj Baretić ◽  
Michael Jenkyn-Bedford ◽  
Valentina Aria ◽  
Giuseppe Cannone ◽  
Mark Skehel ◽  
...  

AbstractThe eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), that have important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3-3.5 Å resolution cryo-EM structures comprising CMG, Ctf4, Csm3/Tof1 and Mrc1 at a replication fork. The structures provide high-resolution views of CMG:DNA interactions, revealing the mechanism of strand separation. Furthermore, they illustrate the topology of Mrc1 in the replisome and show Csm3/Tof1 ‘grips’ duplex DNA ahead of CMG via a network of interactions that are important for efficient replication fork pausing. Our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


2019 ◽  
Author(s):  
Leticia Koch Lerner ◽  
Sandro Holzer ◽  
Mairi L. Kilkenny ◽  
Pierre Murat ◽  
Saša Šviković ◽  
...  

Regions of the genome with the potential to form secondary structure pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. The fork protection complex (FPC), a conserved group of replisome-associated proteins including Timeless, Tipin, and Claspin, plays an important role in maintaining efficient replisome activation, ensuring optimum fork rates, sister chromatid cohesion and checkpoint function. It also helps maintain the stability of sequences prone to secondary structure formation through an incompletely understood mechanism. Here, we report a previously unappreciated DNA binding domain in the C-terminus of Timeless, which exhibits specific binding to G quadruplex (G4) structures. We show that, in vivo, both the C-terminus of Timeless and the DDX11 helicase act collaboratively to ensure processive replication of G4 structures to prevent genetic and epigenetic instability.


Sign in / Sign up

Export Citation Format

Share Document