scholarly journals A Novel Splice Donor Site in thegag-polGene Is Required for HIV-1 RNA Stability

2006 ◽  
Vol 281 (27) ◽  
pp. 18644-18651 ◽  
Author(s):  
Martin Lützelberger ◽  
Line S. Reinert ◽  
Atze T. Das ◽  
Ben Berkhout ◽  
Jørgen Kjems
Virology ◽  
2014 ◽  
Vol 468-470 ◽  
pp. 609-620 ◽  
Author(s):  
Nancy Mueller ◽  
Nikki van Bel ◽  
Ben Berkhout ◽  
Atze T. Das

Retrovirology ◽  
2013 ◽  
Vol 10 (S1) ◽  
Author(s):  
Nancy Mueller ◽  
Ben Berkhout ◽  
Atze Das

2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Nancy Mueller ◽  
Alexander O. Pasternak ◽  
Bep Klaver ◽  
Marion Cornelissen ◽  
Ben Berkhout ◽  
...  

ABSTRACTTranscription of the HIV-1 proviral DNA and subsequent processing of the primary transcript results in the production of a large set of unspliced and differentially spliced viral RNAs. The major splice donor site (5′ss) that is located in the untranslated leader of the HIV-1 transcript is used for the production of all spliced RNAs, and splicing at this site has to be tightly regulated to allow the balanced production of all viral RNAs and proteins. We demonstrate that the viral Tat protein, which is known to activate viral transcription, also stimulates splicing at the major 5′ss. As for the transcription effect, Tat requires the viral long terminal repeat promoter and thetrans-acting responsive RNA hairpin for splicing regulation. These results indicate that HIV-1 transcription and splicing are tightly coupled processes through the coordinated action of the essential Tat protein.IMPORTANCEThe HIV-1 proviral DNA encodes a single RNA transcript that is used as RNA genome and packaged into newly assembled virus particles. This full-length RNA is also used as mRNA for the production of structural and enzymatic proteins. Production of other essential viral proteins depends on alternative splicing of the primary transcript, which yields a large set of differentially spliced mRNAs. Optimal virus replication requires a balanced production of all viral RNAs, which means that the splicing process has to be strictly regulated. We show that the HIV-1 Tat protein, a factor that is well known for its transcription activating function, also stimulates splicing. Thus, Tat controls not only the level of the viral RNA but also the balance between spliced and unspliced RNAs.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
William L. Macken ◽  
Annie Godwin ◽  
Gabrielle Wheway ◽  
Karen Stals ◽  
Liliya Nazlamova ◽  
...  

Abstract Background Coat protein complex 1 (COPI) is integral in the sorting and retrograde trafficking of proteins and lipids from the Golgi apparatus to the endoplasmic reticulum (ER). In recent years, coat proteins have been implicated in human diseases known collectively as “coatopathies”. Methods Whole exome or genome sequencing of two families with a neuro-developmental syndrome, variable microcephaly and cataracts revealed biallelic variants in COPB1, which encodes the beta-subunit of COPI (β-COP). To investigate Family 1’s splice donor site variant, we undertook patient blood RNA studies and CRISPR/Cas9 modelling of this variant in a homologous region of the Xenopus tropicalis genome. To investigate Family 2’s missense variant, we studied cellular phenotypes of human retinal epithelium and embryonic kidney cell lines transfected with a COPB1 expression vector into which we had introduced Family 2’s mutation. Results We present a new recessive coatopathy typified by severe developmental delay and cataracts and variable microcephaly. A homozygous splice donor site variant in Family 1 results in two aberrant transcripts, one of which causes skipping of exon 8 in COPB1 pre-mRNA, and a 36 amino acid in-frame deletion, resulting in the loss of a motif at a small interaction interface between β-COP and β’-COP. Xenopus tropicalis animals with a homologous mutation, introduced by CRISPR/Cas9 genome editing, recapitulate features of the human syndrome including microcephaly and cataracts. In vitro modelling of the COPB1 c.1651T>G p.Phe551Val variant in Family 2 identifies defective Golgi to ER recycling of this mutant β-COP, with the mutant protein being retarded in the Golgi. Conclusions This adds to the growing body of evidence that COPI subunits are essential in brain development and human health and underlines the utility of exome and genome sequencing coupled with Xenopus tropicalis CRISPR/Cas modelling for the identification and characterisation of novel rare disease genes.


1994 ◽  
Vol 302 (3) ◽  
pp. 729-735 ◽  
Author(s):  
J F Bateman ◽  
D Chan ◽  
I Moeller ◽  
M Hannagan ◽  
W G Cole

A heterozygous de novo G to A point mutation in intron 8 at the +5 position of the splice donor site of the gene for the pro alpha 1(I) chain of type I procollagen, COL1A1, was defined in a patient with type IV osteogenesis imperfecta. The splice donor site mutation resulted not only in the skipping of the upstream exon 8 but also unexpectedly had the secondary effect of activating a cryptic splice site in the next upstream intron, intron 7, leading to re-definition of the 3′ limit of exon 7. These pre-mRNA splicing aberrations cause the deletion of exon 8 sequences from the mature mRNA and the inclusion of 96 bp of intron 7 sequence. Since the mis-splicing of the mutant allele product resulted in the maintenance of the correct codon reading frame, the resultant pro alpha 1(I) chain contained a short non-collagenous 32-amino-acid sequence insertion within the repetitive Gly-Xaa-Yaa collagen sequence motif. At the protein level, the mutant alpha 1(I) chain was revealed by digestion with pepsin, which cleaved the mutant procollagen within the protease-sensitive non-collagenous insertion, producing a truncated alpha 1(I). This protease sensitivity demonstrated the structural distortion to the helical structure caused by the insertion. In long-term culture with ascorbic acid, which stimulates the formation of a mature crosslinked collagen matrix, and in tissues, there was no evidence of the mutant chain, suggesting that during matrix formation the mutant chain was unable to stably incorporated into the matrix and was degraded proteolytically.


Gene ◽  
2013 ◽  
Vol 532 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Xiuyan Shi ◽  
Chunyan Ji ◽  
Lihua Cao ◽  
Yuhong Wu ◽  
Yuyang Shang ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13248
Author(s):  
John G. Conboy

A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism: the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.


Sign in / Sign up

Export Citation Format

Share Document