Matched spatial-phase-shifting for the temporal-phase-unwrapping in electronic speckle pattern interferometry

Optik ◽  
2001 ◽  
Vol 112 (11) ◽  
pp. 515-520 ◽  
Author(s):  
R.A. Martínez-Celorio ◽  
A. Dávila ◽  
B. Barrientos ◽  
J.H. Puga ◽  
Luis Martí López
1998 ◽  
Vol 14 (1) ◽  
pp. 31-39 ◽  
Author(s):  
C. W. Chen ◽  
H. Y. Chang ◽  
C. K. Lee

ABSTRACTPhase shifting technique is one of the most important technologies in the metrology field. Simply by performing an interferogram measurement, and then adopting the phase shifting technique to unwrap the interferogram into a phase map, tasks such as object surface profile reconstruction, holographic interferometry, electronic speckle pattern interferometry, etc., can all be easily accomplished. An innovative phase shifting system, which uses piezoelectric actuators to execute phase shifting first and then implementing a cellular automata algorithm to unwrap phase data, was designed, built, and tested. Since cellular automata is a true parallel process, and noise appearing within the interferogram will not get propagated, this novel system is far more robust than the systems based on the traditional path following phase-unwrapping algorithm. In addition, this new algorithm also provides us with a way to adopt phase-masks within the cellular automata implementations of the phase unwrap operations. All these newly developed techniques make this newly developed system adaptable to many metrology applications, even when high noise is present or when lateral shear exists within the image field. The successful incorporation of the phase-mask approach into the cellular automata phase unwrapping algorithm essentially makes this newly developed system adaptable to take phase map measurements in many practical applications.


2003 ◽  
Vol 217 (1-6) ◽  
pp. 151-160 ◽  
Author(s):  
Björn Kemper ◽  
Jochen Kandulla ◽  
Dieter Dirksen ◽  
Gert von Bally

2012 ◽  
Vol 6-7 ◽  
pp. 76-81
Author(s):  
Yong Liu ◽  
Ding Fa Huang ◽  
Yong Jiang

Phase-shifting interferometry on structured light projection is widely used in 3-D surface measurement. An investigation shows that least-squares fitting can significantly decrease random error by incorporating data from the intermediate phase values, but it cannot completely eliminate nonlinear error. This paper proposes an error-reduction method based on double three-step phase-shifting algorithm and least-squares fitting, and applies it on the temporal phase unwrapping algorithm using three-frequency heterodyne principle. Theoretical analyses and experiment results show that this method can greatly save data acquisition time and improve the precision.


2013 ◽  
Vol 448-453 ◽  
pp. 3696-3701
Author(s):  
Yan Bin He ◽  
Xin Zhong Li ◽  
Min Zhou

A phase-shifting algorithm, called a (4,4) algorithm, which takes four phase-shifting interferograms before a specimen is deformed and four interferograms after a specimen is deformed, is presented first. This method is most widely used for phase extraction. Its drawback limited it to be used in dynamic measurements. Also shown is an algorithm called a (4,1) algorithm that takes four phase-shifting interferograms before a specimen is deformed and one interferogram after a specimen is deformed. Because a high-speed camera can be used to record the dynamic interferogram of the specimen, this algorithm has the potential to retain the phase-shifting capability for ESPI in dynamic measurements. The quality of the phase map obtained using (4,1) algorithm is quite lower compared to using (4,4) algorithm. In order to obtain high-quality phase map in dynamic measurements, a direct-correlation algorithm was integrated with the (4,1) algorithm to form DC-(4,1) algorithm which is shown to improve significantly the quality of the phase maps. The theoretical and experimental aspects of this newly developed technique, which can extend ESPI to areas such as high-speed dynamic measurements, are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document