Microbial control of crop pests using insect viruses.

Author(s):  
K. E. Eberle ◽  
J. A. Jehle ◽  
J. Huber
Parasitology ◽  
1982 ◽  
Vol 84 (4) ◽  
pp. 35-77 ◽  
Author(s):  
C. C. Payne

SUMMARYVirus diseases have been reported from more than 800 species of insects and mites. Isolates of the baculovirus and cytoplasmic polyhedrosis virus groups have biological properties which should lead to their successful use as microbial control agents in integrated pest management programmes. These viruses infect the larval stages of many lepidopterous and hymenopterous pests, producing a chronic or lethal infection and the release of large quantities of relatively stable infective inclusion bodies (IBs). The IBs serve as the means by which the viruses are transmitted and persist outside the host. Younger larvae are more susceptible to infection than older stages, and this difference influences the timing of application and doses of virus needed for practical pest control. The high degree of host specificity of many isolates reduces their potential ecological hazard but also limits their use, particularly on crops where a complex of pests is established. Environmental persistence is also a limiting factor as virus is rapidly inactivated by ultra-violet light even when contained within IBs. The viruses persist for longer periods when transmitted within the host population, a feature of virus infections restricted to the insect gut.The practical use of insect viruses in horticulture and agriculture does not utilize their full epizootic potential, but takes advantage of their high pathogenicity and specificity. The baculoviruses of codling moth, andHeliothisspp. provide satisfactory pest control, but for their most cost-effective use it is important to determine the minimum dosage rates of virus required. It is encouraging that studies of the virus control ofPierisspp. have suggested that control achieved by the insecticidal use of a virus can be closely predicted from information on dosage-mortality responses, larval feeding rates and virus persistence. The stability of forest and grassland, and their high economic thresholds makes them ideal candidates for longer-term control. Viruses of the coconut rhinoceros beetle and european spruce sawfly provide examples of classical biological control where the viruses persist for long periods, are efficiently transmitted and act as natural regulators of their hosts. Virus control of pasture, and some forest, pests may be possible by manipulating enzootic viruses without the need for direct control measures. More frequently insecticidal applications are needed, providing control of limited duration which requires periodic ‘topping-up’.Few viruses are commercially-available; their selectivity and often small potential market, may limit industrial interest. However, improvements in virus production, formulation and a better understanding of virus epizootiology should lead to an increasing role for this group of insect pathogens in biological control.


2019 ◽  
Vol 9 (o3) ◽  
Author(s):  
¹Hind H. Muunim ◽  
Muna T Al-Mossawei ◽  
Mais Emad Ahmed

Biofilms formation by pathogens microbial Control considered important in medical research because it is the hazarded virulence factor leading to becoming difficult to treat because of its high resistance to antimicrobials. Glycopeptide antibiotic a (Vancomycin) and the commercial bacteriocin (Nisin A) were used to comparative with purification bacteriocin (MRSAcin) against MRSA biofilm. One hundred food samples were collected from Baghdad markets from July 2016 to September 2016, including (cheese, yogurt, raw milk, fried meat, grilled meat, and beef burger). All samples were cultures; S. aureus was confirmation by macroscopic culture and microscopic examination, in addition to biochemical tests. Methicillin resistance S. asureus (MRSA) were identification by antibiotic sensitivity test (AST), Vitek 2 system. The result shown the 60(60%) isolate were identified as S. aureus and 45(75%) gave positive result as MRSA isolate, M13 isolate was chosen as MRSA isolates highest biofilm formation for treatment with MRSAcin, Nisin A(bacteriocin) and Vancomycin (antibiotic) to compared the more antimicrobial have bacteriocidal effect. The sensitivity test uses to determine the effect of MRSAcin, Nisin A, and Vancomycin MIC on MRSA planktonic cell by (WDA). The new study shows the impacts of new kind Pure Bacteriocins (MRSAcin) from methicillin-resistant S. aureus (MRSA) highly effects then (Vancomycin and Nisin A) at different concentration. In a current study aimed to suggest new Bacteriocin is potent highly for the treatment of resistant bacteria biofilm infections in food preservatives


Sign in / Sign up

Export Citation Format

Share Document