Insect viruses as control agents

Parasitology ◽  
1982 ◽  
Vol 84 (4) ◽  
pp. 35-77 ◽  
Author(s):  
C. C. Payne

SUMMARYVirus diseases have been reported from more than 800 species of insects and mites. Isolates of the baculovirus and cytoplasmic polyhedrosis virus groups have biological properties which should lead to their successful use as microbial control agents in integrated pest management programmes. These viruses infect the larval stages of many lepidopterous and hymenopterous pests, producing a chronic or lethal infection and the release of large quantities of relatively stable infective inclusion bodies (IBs). The IBs serve as the means by which the viruses are transmitted and persist outside the host. Younger larvae are more susceptible to infection than older stages, and this difference influences the timing of application and doses of virus needed for practical pest control. The high degree of host specificity of many isolates reduces their potential ecological hazard but also limits their use, particularly on crops where a complex of pests is established. Environmental persistence is also a limiting factor as virus is rapidly inactivated by ultra-violet light even when contained within IBs. The viruses persist for longer periods when transmitted within the host population, a feature of virus infections restricted to the insect gut.The practical use of insect viruses in horticulture and agriculture does not utilize their full epizootic potential, but takes advantage of their high pathogenicity and specificity. The baculoviruses of codling moth, andHeliothisspp. provide satisfactory pest control, but for their most cost-effective use it is important to determine the minimum dosage rates of virus required. It is encouraging that studies of the virus control ofPierisspp. have suggested that control achieved by the insecticidal use of a virus can be closely predicted from information on dosage-mortality responses, larval feeding rates and virus persistence. The stability of forest and grassland, and their high economic thresholds makes them ideal candidates for longer-term control. Viruses of the coconut rhinoceros beetle and european spruce sawfly provide examples of classical biological control where the viruses persist for long periods, are efficiently transmitted and act as natural regulators of their hosts. Virus control of pasture, and some forest, pests may be possible by manipulating enzootic viruses without the need for direct control measures. More frequently insecticidal applications are needed, providing control of limited duration which requires periodic ‘topping-up’.Few viruses are commercially-available; their selectivity and often small potential market, may limit industrial interest. However, improvements in virus production, formulation and a better understanding of virus epizootiology should lead to an increasing role for this group of insect pathogens in biological control.

Author(s):  
Sean D. Moore

Thaumatotibia leucotreta, known as the false codling moth, is a pest of citrus and other crops in sub-Saharan Africa. As it is endemic to this region and as South Africa exports most of its citrus around the world, T. leucotreta has phytosanitary status for most markets. This means that there is zero tolerance for any infestation with live larvae in the market. Consequently, control measures prior to exporting must be exemplary. Certain markets require a standalone postharvest disinfestation treatment for T. leucotreta. However, the European Union accepts a systems approach, consisting of three measures and numerous components within these measures. Although effective preharvest control measures are important under all circumstances, they are most critical where a standalone postharvest disinfestation treatment is not applied, such as within a systems approach. Conventional wisdom may lead a belief that effective chemical control tools are imperative to achieve this end. However, we demonstrate that it is possible to effectively control T. leucotreta to a level acceptable for a phytosanitary market, using only biological control tools. This includes parasitoids, predators, microbial control, semiochemicals, and sterile insects. Simultaneously, on-farm and environmental safety is improved and compliance with the increasing stringency of chemical residue requirements imposed by markets is achieved.


1997 ◽  
Vol 129 (S171) ◽  
pp. 83-99 ◽  
Author(s):  
Mark S. Goettel ◽  
Stefan T. Jaronski

AbstractMicrobial control agents offer a method of pest control using organisms that are a natural component of the environment and are usually much more selective than chemical pesticides. Furthermore, they can usually be integrated with other methods of control, and may provide prolonged control by establishment within the host population. However, microbial control agents also possess properties that can pose human and environmental risks depending on the nature of the pathogen and its pattern of use. We present an overview of issues concerning the safety and registration of microbial control agents with emphasis on pathogens of locusts and grasshoppers. The potential safety issues and other consequences of concern from the deployment of microorganisms for pest control are: (1) pathogenicity to non-target organisms, (2) toxigenicity to non-target organisms, (3) competitive displacement of microorganisms, and (4) allergenicity. Inundative control methods pose unique risks because the pathogens must be produced in large quantities, stored, transported, and applied, usually in concentrations much higher than would normally ever occur naturally. The overriding concern in introducing an exotic agent is the risk to non-target beneficial organisms, because once the agent becomes established, it will in most situations be impossible to eradicate. However, if indigenous organisms are used, there is relatively little risk of irreversible, long-term detrimental effects. A synopsis of safety testing results of some of the more promising microbial control agents for grasshoppers and locusts and an evaluation of their potential hazards are presented. Safety to vertebrates is evaluated by a tiered series of laboratory test requirements. Assessments on hazards to non-target invertebrates are based principally on results of laboratory bioassays. Safety tests should be chosen with regard to the biological characteristics of the agent and should not impose standards that are more stringent than those imposed on other forms of pest control. Regulatory oversight should assure the integrity of the environment and safety of the public, while at the same time not unduly hampering the development, registration, and use of more sustainable pest control methods.


2014 ◽  
Vol 105 (1) ◽  
pp. 1-12 ◽  
Author(s):  
D. Fischbein ◽  
J.C. Corley

AbstractClassical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoidIbalia leucospoides. The species is a natural enemy ofSirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success byI. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to whichS. noctiliopopulation is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest–parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana López-Moral ◽  
Carlos Agustí-Brisach ◽  
Antonio Trapero

Verticillium wilt of olive (Olea europaea subsp. europaea L.) (VWO), caused by the hemibiotrophic soil-borne fungus Verticillium dahliae Kleb., is considered the major limiting factor of this crop in Mediterranean-type climate regions of the world. The absence of effective chemical treatments makes the control of the disease difficult. In this way, the use of biostimulants and host plant defense inducers seems to be one of the most promising biological and eco-friendly alternatives to traditional control measures. Thus, the main goal of this study was to evaluate the effect of 32 products, including amino acids, micronutrients, microorganisms, substances of natural origin, copper complex-based products, and organic and inorganic salts against the disease under controlled conditions. To this end, their effects on mycelial growth and microsclerotia (MS) inhibition of V. dahliae were evaluated by means of dual cultures or by sensitivity tests in vitro as well as on disease progression in planta. Wide ranging responses to the pathogen and disease reduction levels were observed among all the products tested, suggesting multiple modes of action. Copper-based products were among the most effective for mycelial growth and MS inhibition, whereas they did not show an important effect on the reduction of disease severity in planta. Phoma sp. and Aureobasidium pullulans were the most effective in disease reduction in planta with foliar application. On the other hand, two phosphite salts, one with copper and the other with potassium, were the most effective in disease reduction in planta when they were applied by irrigation, followed by A. pullulans and Bacillus amyloliquefaciens. This study will be useful to select the best candidates for future studies, contributing significantly to new insights into the current challenge of the biological control of VWO.


1964 ◽  
Vol 96 (1-2) ◽  
pp. 259-264 ◽  
Author(s):  
Bryan P. Beirne

AbstractThe reason control measures are applied is to reduce the harm caused by pests. “Pests” is a subjective word that is arbitrarily used to refer to some of the living organisms that harm man and his property. Pest control measures may be classified on any of several bases, bur any one classification that uses several bases is liable to cause misunderstandings. Biological controls are the use by man of living organisms to control pest damage. Approaches to biological control are illustrated by results of work on four pests found in Ontario. These results also illustrate how insects may be interrelated through natural enemies that they have in common. As far as possible control measures should be selective for pests, or pest and other non-beneficial, species only. Biological controls tend to be relatively more selective than other, comparable, control measures. They are also the most feasible existing way of keeping pest damage down without continuing human intervention. Increasing attempts to erase pest problems, rather than to alleviate pest attacks temporarily, may result in increased Government participation in and regulation of pest control programmes.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 509e-509
Author(s):  
Robert P. Rice

The Cal Poly philosophy of “Learn and Understand by Doing” has been integrated with problem-based learning and the use of the latest technology to produce a class that closely simulates real-life pest control situations. Goals of the class, Disease and Pest Control Systems for Ornamental Plants, are to teach students pest monitoring, control and problem solving techniques, the use of resources including the internet and journals, and the use of the latest pest control equipment and application techniques. Students are shown pest situations and then work in groups to diagnose the problem, investigate management strategies, apply control measures, and monitor results. Weekly class presentations inform the class of the various projects and help to teach the class organization and presentation skills. Student evaluations and test performance have demonstrated that students achieve class objectives substantially better with the problem-based learning approach than with the previous lecture-based approach to the class.


2007 ◽  
Vol 4 (16) ◽  
pp. 841-849 ◽  
Author(s):  
Maite Severins ◽  
Don Klinkenberg ◽  
Hans Heesterbeek

Infection systems where traits of the host, such as acquired immunity, interact with the infection process can show complex dynamic behaviour with counter-intuitive results. In this study, we consider the traits ‘immune status’ and ‘exposure history’, and our aim is to assess the influence of acquired individual heterogeneity in these traits. We have built an individual-based model of Eimeria acervulina infections, a protozoan parasite with an environmental stage that causes coccidiosis in chickens. With the model, we simulate outbreaks of the disease under varying initial contaminations. Heterogeneity in the traits arises stochastically through differences in the dose and frequency of parasites that individuals pick up from the environment. We find that the relationship between the initial contamination and the severity of an outbreak has a non-monotonous ‘wave-like’ pattern. This pattern can be explained by an increased heterogeneity in the host population caused by the infection process at the most severe outbreaks. We conclude that when dealing with these types of infection systems, models that are used to develop or evaluate control measures cannot neglect acquired heterogeneity in the host population traits that interact with the infection process.


Author(s):  
Patricia Daniela da Silva Pires ◽  
Josué Sant’ Ana ◽  
Luiza Rodrigues Redaelli

Abstract Anastrepha fraterculus (Diptera: Tephritidae) is a major barrier to fruit production and exportation. In Brazil, the native parasitoid Aganaspis pelleranoi (Hymenoptera: Figitidae) and the exotic parasitoid Diachasmimorpha longicaudata (Hymenoptera, Braconidae) stand out as biological control agents. Knowledge of the factors that affect interactions among parasitoids, A. fraterculus, and host fruits may enhance the use of these agents in biological control programmes. This study evaluated the chemotaxis and parasitism of A. pelleranoi and D. longicaudata females reared on A. fraterculus larvae and kept on an artificial diet, red guava (Psidium guajava) or apple (Malus domestica). Females of both parasitoid species that emerged from larvae raised on artificial diet, guava or apple, were tested to Y olfactometer choice tests. In the parasitism tests, both parasitoid species were made to choose between A. fraterculus larvae brushed with water, apple pulp or guava pulp. D. longicaudata females from artificial diet (control) did not distinguish between fruit odours; however, females of D. longicaudata from larvae kept in apple or guava directed to the odours of their original fruit. The greatest parasitism for D. longicaudata occurred in the units that contained the pulp in which the larvae grew. A. pelleranoi from artificial diet preferred guava odours, including the females kept in apple. Similar results were observed in the parasitism bioassays. Our results found that A. fraterculus larval feeding influenced search behaviour and parasitism of D. longicaudata, whereas A. pelleranoi rearing experience did not affect its host choices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aoife J. McHugh ◽  
Min Yap ◽  
Fiona Crispie ◽  
Conor Feehily ◽  
Colin Hill ◽  
...  

AbstractEfficient and accurate identification of microorganisms throughout the food chain can potentially allow the identification of sources of contamination and the timely implementation of control measures. High throughput DNA sequencing represents a potential means through which microbial monitoring can be enhanced. While Illumina sequencing platforms are most typically used, newer portable platforms, such as the Oxford Nanopore Technologies (ONT) MinION, offer the potential for rapid analysis of food chain microbiomes. Initial assessment of the ability of rapid MinION-based sequencing to identify microbes within a simple mock metagenomic mixture is performed. Subsequently, we compare the performance of both ONT and Illumina sequencing for environmental monitoring of an active food processing facility. Overall, ONT MinION sequencing provides accurate classification to species level, comparable to Illumina-derived outputs. However, while the MinION-based approach provides a means of easy library preparations and portability, the high concentrations of DNA needed is a limiting factor.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


Sign in / Sign up

Export Citation Format

Share Document