Factors influencing the efficiency of isolation and culture of human embryonic germ cells

2004 ◽  
Vol 1 (3) ◽  
pp. 191-196
Author(s):  
Hua Jin-Lian ◽  
Dou Zhong-Ying ◽  
Xu Xiao-Ming ◽  
Li Song ◽  
Yang Yu-Ai ◽  
...  

AbstractEmbryonic germ (EG) cells are pluripotent cells derived from the primordial germ cells of gonads, gonadal ridges and mesenteries, and analogies of foetuses, with the ability to undergo both self-renewal and multiple differentiation. These cells can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cell of the body. The present paper investigates some factors influencing the efficiency of isolation and culture of human EG cells, such as foetus age, culture serum, added cytokines and feeder cells. The results demonstrate that foetuses of 7–12 weeks are optimal for in vitro culture of human EG cells. The basic medium consisted of DMEM, 1×non-essential amino acids, 2 mM l-glutamine and 1 mM sodium pyruvate. Supplementation with 15% foetal bovine serum, 4 ng/ml human recombinant leukaemia inhibitory factor, 4 ng/ml basic fibroblast growth factor and 20 ng/ml stem cell factor clearly improved the efficiency of isolation and culture of human EG cells. Murine embryonic fibroblasts were better feeder cells than human embryonic fibroblasts, bovine embryonic fibroblasts or STO cell line.

Zygote ◽  
1998 ◽  
Vol 6 (3) ◽  
pp. 271-275 ◽  
Author(s):  
Gabriela Durcova-Hills ◽  
Katja Prelle ◽  
Sigrid Müller ◽  
Miodrag Stojkovic ◽  
Jan Motlik ◽  
...  

We studied the effect of murine leukaemia inhibitory factor (LIF), human basic fibroblast growth factor (bFGF) and porcine stem cell factor (SCF) on the survival and/or proliferation of porcine primordial germ cells (PGCs) obtained from 27-day-old embryos in vitro. PGCs were cultured in embryonic stem cell (ESC) medium supplemented with or without either LIF (1000 IU/ml) alone or LIF together with bFGF (10 ng/ml). They were seeded on mitotically inactivated feeder cells, either STO or transfected STO cells (STO#8), expressing the membrane-bound form of porcine SCF. PGCs were identified by their alkaline phosphatase (AP) activity and counted after 1, 3 and 5 days in culture. After 1 day of culture, PGCs cultured on STO#8 cells showed significantly higher survival than PGCs cultured on STO cells (p < 0.05). The combined effect of SCF and LIF caused a significant increase in PGC number by day 3 of culture when PGCs were cultured on either STO cells (p < 0.01) or STO#8 (p < 0.001). When SCF and LIF were used together with bFGF no increase in the PGC number was observed. Our results suggest that the membrane-bound form of porcine SCF plays a pivotal role in the primary culture of porcine PGCs and that bFGF is not required in vitro.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1769
Author(s):  
Agata Szczerba ◽  
Takashi Kuwana ◽  
Michelle Paradowska ◽  
Marek Bednarczyk

The present study had two aims: (1) To develop a culture system that imitates a normal physiological environment of primordial germ cells (PGCs). There are two types of PGCs in chicken: Circulating blood (cPGCs) and gonadal (gPGCs). The culture condition must support the proliferation of both cPGCs and gPGCs, without affecting their migratory properties and must be deprived of xenobiotic factors, and (2) to propose an easy-to-train, nonlabeling optical technique for the routine identification of live PGCs. To address the first aim, early chicken embryo’s feeder cells were examined instead of using feeder cells from mammalian species. The KAv-1 medium at pH 8.0 with the addition of bFGF (basic fibroblast growth factor) was used instead of a conventional culture medium (pH approximately 7.2). Both cPGCs and gPGCs proliferated in vitro and retained their migratory ability after 2 weeks of culture. The cultivated cPGCs and gPGCs colonized the right and/or left gonads of the recipient male and female embryos. To address the second aim, we demonstrated a simple and rapid method to identify live PGCs as bright cells under darkfield illumination. The PGCs rich in lipid droplets in their cytoplasm highly contrasted with the co-cultured feeder layer and other cell populations in the culture.


Cloning ◽  
2000 ◽  
Vol 2 (4) ◽  
pp. 197-205 ◽  
Author(s):  
Chang-Kyu Lee ◽  
Jorge A. Piedrahita

Cell Research ◽  
2021 ◽  
Author(s):  
Xiaoxiao Wang ◽  
Yunlong Xiang ◽  
Yang Yu ◽  
Ran Wang ◽  
Yu Zhang ◽  
...  

AbstractThe pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.


1999 ◽  
Vol 51 (1) ◽  
pp. 208 ◽  
Author(s):  
C-K Lee ◽  
R Weaks ◽  
J.A Piedrahita

2017 ◽  
Vol 45 (7) ◽  
pp. 1608-1619 ◽  
Author(s):  
Kanako Morohaku ◽  
Yuji Hirao ◽  
Yayoi Obata

Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


Sign in / Sign up

Export Citation Format

Share Document