Relative bias and precision of age estimates among calcified structures of Spotted Gar Lepisosteus oculatus, Shortnose Gar Lepisosteus platostomus, and Longnose Gar Lepisosteus osseus

Author(s):  
Sarah M. King ◽  
Solomon R. David ◽  
Jeffrey A. Stein
2012 ◽  
Vol 114 (4) ◽  
pp. 370-378 ◽  
Author(s):  
Daniele Zaccone ◽  
Konrad Dabrowski ◽  
Eugenia Rita Lauriano ◽  
Angela de Pasquale ◽  
Daniele Macrì ◽  
...  

1998 ◽  
Vol 201 (7) ◽  
pp. 943-948 ◽  
Author(s):  
C G Farmer ◽  
D C Jackson

Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva). <P>


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 622 ◽  
Author(s):  
Yi Sun ◽  
Chao Liu ◽  
Moli Huang ◽  
Jian Huang ◽  
Changhong Liu ◽  
...  

Circadian rhythms are biological rhythms with a period of approximately 24 h. While canonical circadian clock genes and their regulatory mechanisms appear highly conserved, the evolution of clock gene families is still unclear due to several rounds of whole genome duplication in vertebrates. The spotted gar (Lepisosteus oculatus), as a non-teleost ray-finned fish, represents a fish lineage that diverged before the teleost genome duplication (TGD), providing an outgroup for exploring the evolutionary mechanisms of circadian clocks after whole-genome duplication. In this study, we interrogated the spotted gar draft genome sequences and found that spotted gar contains 26 circadian clock genes from 11 families. Phylogenetic analysis showed that 9 of these 11 spotted gar circadian clock gene families have the same number of genes as humans, while the members of the nfil3 and cry families are different between spotted gar and humans. Using phylogenetic and syntenic analyses, we found that nfil3-1 is conserved in vertebrates, while nfil3-2 and nfil3-3 are maintained in spotted gar, teleost fish, amphibians, and reptiles, but not in mammals. Following the two-round vertebrate genome duplication (VGD), spotted gar retained cry1a, cry1b, and cry2, and cry3 is retained in spotted gar, teleost fish, turtles, and birds, but not in mammals. We hypothesize that duplication of core clock genes, such as (nfil3 and cry), likely facilitated diversification of circadian regulatory mechanisms in teleost fish. We also found that the transcription factor binding element (Ahr::Arnt) is retained only in one of the per1 or per2 duplicated paralogs derived from the TGD in the teleost fish, implicating possible subfuctionalization cases. Together, these findings help decipher the repertoires of the spotted gar’s circadian system and shed light on how the vertebrate circadian clock systems have evolved.


2016 ◽  
Vol 26 (6) ◽  
pp. 1107-1119 ◽  
Author(s):  
Margaret Boothroyd ◽  
Nicholas E. Mandrak ◽  
Michael Fox ◽  
Chris C. Wilson

Sign in / Sign up

Export Citation Format

Share Document