Lipschitz stability in an inverse problem for a hyperbolic equation with a finite set of boundary data

2008 ◽  
Vol 87 (10-11) ◽  
pp. 1105-1119 ◽  
Author(s):  
M. Bellassoued ◽  
D. Jellali ◽  
M. Yamamoto
2006 ◽  
Vol 85 (10) ◽  
pp. 1219-1243 ◽  
Author(s):  
M. Bellassoued ◽  
D. Jellali ◽  
M. Yamamoto

2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
El Mustapha Ait Ben Hassi ◽  
Salah-Eddine Chorfi ◽  
Lahcen Maniar

Abstract We study an inverse problem involving the restoration of two radiative potentials, not necessarily smooth, simultaneously with initial temperatures in parabolic equations with dynamic boundary conditions. We prove a Lipschitz stability estimate for the relevant potentials using a recent Carleman estimate, and a logarithmic stability result for the initial temperatures by a logarithmic convexity method, based on observations in an arbitrary subdomain.


2020 ◽  
Vol 28 (2) ◽  
pp. 185-193
Author(s):  
Zhongqi Yin

AbstractThis paper is addressed to a semi-linear stochastic transport equation with three unknown parameters. It is proved that the initial displacement, the terminal state and the random term in diffusion are uniquely determined by the state on partial boundary and a Lipschitz stability of the inverse problem is established. The main tool we employ is a global Carleman estimate for stochastic transport equations.


Author(s):  
Patricia Gaitan ◽  
Hadjer Ouzzane

AbstractThis work is concerned with the study of the inverse problem of determining two coefficients in a hyperbolic-parabolic system using the following observation data: an interior measurement of only one component and data of two components at a fixed time over the whole spatial domain. A Lipschitz stability result is proved using Carleman estimates.


Sign in / Sign up

Export Citation Format

Share Document