Influence of Long‐Term Sodic‐Water Irrigation, Gypsum, and Organic Amendments on Soil Properties and Nitrogen Mineralization Kinetics under Rice–Wheat System

2007 ◽  
Vol 38 (19-20) ◽  
pp. 2717-2731
Author(s):  
O. P. Choudhary ◽  
Gurleen Kaur ◽  
Dinesh K. Benbi
Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 141 ◽  
Author(s):  
Joginder Kaur ◽  
O. P. Choudhary ◽  
Bijay-Singh

Long-term sodic-water irrigation may adversely affect the quality of soil organic carbon along with some soil properties. The extent to which the adverse effects can be ameliorated through the use of gypsum and amendments needs to be known. Soil properties and microbial biomass carbon (MBC) were studied after 14 years of sodic water (SW) irrigation and application of different levels of gypsum, farmyard manure (FYM), green manure (GM), and wheat straw (WS) to a sandy loam soil. Irrigation with SW increased pH, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage (ESP), and bulk density, and decreased final infiltration rate of soil. Application of gypsum and organic amendments reversed these trends. Decrease in MBC due to SW irrigation was from 132.5 to 44.6 mg/kg soil in the 0–75 mm soil layer and from 49.0 to 17.3 mg/kg soil in the 75–150 mm soil layer. Application of gypsum and organic amendments significantly increased MBC; GM and FYM were more effective than WS. Changes in soil ESP explained 85 and 75% variation in MBC in the unamended and organically amended SW treatments, respectively. Soil pH as additional variable improved the predictability of MBC to 96% and 77%. Irrigation with SW reduced yield of rice plus wheat by 5 t/ha. Application of gypsum and organic amendments significantly increased the rice and wheat yield; it was significantly correlated with MBC (r = 0.56**, n = 60). It confirms that MBC rather than organic C is a more sensitive indicator of environmental stresses in soils caused by long-term sodic water irrigation.


2005 ◽  
Vol 85 (2) ◽  
pp. 307-317 ◽  
Author(s):  
Francis J. Larney ◽  
Olalekan O. Akinremi ◽  
Reynald L. Lemke ◽  
Vasile E. Klaassen ◽  
H. Henry Janzen

Changes in soil properties reflect the success or failure of reclamation practices on abandoned wellsites. We examined the effect on soil properties of four (0, 50, 100 and 150%) topsoil replacement depths (TRD) and five amendment treatments [compost, manure, wheat (Triticum aestivum L.) straw, alfalfa (Medicago sativa L.) hay, check] aimed at reclaiming three wellsites (Strathmore, Hesketh and Rosedale) in southcentral Alberta. TRD treatment differences were consistent across all wellsites, with 30 to 32% higher soil organic carbon (SOC) on the 150% TRD compared to the 0% TRD. Initially, the alfalfa treatment showed higher levels of nitrate-nitrogen (e.g., 26 mg kg-1 vs. 3 to 7 mg kg-1 for the other amendment treatments in the 15- to 30-cm depth at Strathmore in fall 1998), which was related to its rapid breakdown and mineralization of organic N. After 40 mo (June 1997-October 2000), the average amounts (n = 3 wellsites) of added C conserved near the soil surface were: compost (65 ±10% SE) > manure (45 ±16% SE) > alfalfa (28 ±11% SE) > straw (23 ± 6% SE). Our results show that organic amendments play an important role in improving soil properties related to long-term productivity of reclaimed wellsites, especially where topsoil is scarce or absent. Key words: Wellsite reclamation, topsoil depth, organic amendments, soil quality


Sign in / Sign up

Export Citation Format

Share Document