Changes of soil properties and carbon fractions after long-term application of organic amendments in Mollisols

CATENA ◽  
2016 ◽  
Vol 143 ◽  
pp. 140-144 ◽  
Author(s):  
Lu-Jun Li ◽  
Xiao-Zeng Han
2005 ◽  
Vol 85 (2) ◽  
pp. 307-317 ◽  
Author(s):  
Francis J. Larney ◽  
Olalekan O. Akinremi ◽  
Reynald L. Lemke ◽  
Vasile E. Klaassen ◽  
H. Henry Janzen

Changes in soil properties reflect the success or failure of reclamation practices on abandoned wellsites. We examined the effect on soil properties of four (0, 50, 100 and 150%) topsoil replacement depths (TRD) and five amendment treatments [compost, manure, wheat (Triticum aestivum L.) straw, alfalfa (Medicago sativa L.) hay, check] aimed at reclaiming three wellsites (Strathmore, Hesketh and Rosedale) in southcentral Alberta. TRD treatment differences were consistent across all wellsites, with 30 to 32% higher soil organic carbon (SOC) on the 150% TRD compared to the 0% TRD. Initially, the alfalfa treatment showed higher levels of nitrate-nitrogen (e.g., 26 mg kg-1 vs. 3 to 7 mg kg-1 for the other amendment treatments in the 15- to 30-cm depth at Strathmore in fall 1998), which was related to its rapid breakdown and mineralization of organic N. After 40 mo (June 1997-October 2000), the average amounts (n = 3 wellsites) of added C conserved near the soil surface were: compost (65 ±10% SE) > manure (45 ±16% SE) > alfalfa (28 ±11% SE) > straw (23 ± 6% SE). Our results show that organic amendments play an important role in improving soil properties related to long-term productivity of reclaimed wellsites, especially where topsoil is scarce or absent. Key words: Wellsite reclamation, topsoil depth, organic amendments, soil quality


Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 141 ◽  
Author(s):  
Joginder Kaur ◽  
O. P. Choudhary ◽  
Bijay-Singh

Long-term sodic-water irrigation may adversely affect the quality of soil organic carbon along with some soil properties. The extent to which the adverse effects can be ameliorated through the use of gypsum and amendments needs to be known. Soil properties and microbial biomass carbon (MBC) were studied after 14 years of sodic water (SW) irrigation and application of different levels of gypsum, farmyard manure (FYM), green manure (GM), and wheat straw (WS) to a sandy loam soil. Irrigation with SW increased pH, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage (ESP), and bulk density, and decreased final infiltration rate of soil. Application of gypsum and organic amendments reversed these trends. Decrease in MBC due to SW irrigation was from 132.5 to 44.6 mg/kg soil in the 0–75 mm soil layer and from 49.0 to 17.3 mg/kg soil in the 75–150 mm soil layer. Application of gypsum and organic amendments significantly increased MBC; GM and FYM were more effective than WS. Changes in soil ESP explained 85 and 75% variation in MBC in the unamended and organically amended SW treatments, respectively. Soil pH as additional variable improved the predictability of MBC to 96% and 77%. Irrigation with SW reduced yield of rice plus wheat by 5 t/ha. Application of gypsum and organic amendments significantly increased the rice and wheat yield; it was significantly correlated with MBC (r = 0.56**, n = 60). It confirms that MBC rather than organic C is a more sensitive indicator of environmental stresses in soils caused by long-term sodic water irrigation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Sign in / Sign up

Export Citation Format

Share Document