scholarly journals Avalanches in ferroelectric, ferroelastic and coelastic materials: phase transition, domain switching and propagation

2020 ◽  
Vol 569 (1) ◽  
pp. 82-107
Author(s):  
Guillaume F. Nataf ◽  
Ekhard K. H. Salje
2021 ◽  
pp. 2103469
Author(s):  
Yang Yang ◽  
Hongxiang Zong ◽  
Jun Sun ◽  
Xiangdong Ding

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sarangi Venkateshwarlu ◽  
Lalitha K. Venkataraman ◽  
Valentin Segouin ◽  
Frederick P. Marlton ◽  
Ho Chin Hin ◽  
...  

Abstract In many ferroelectrics, large electromechanical strains are observed near regions of composition- or temperature- driven phase coexistence. Phenomenologically, this is attributed to easy re-orientation of the polarization vector and/or phase transition, although their effects are highly convoluted and difficult to distinguish experimentally. Here, we used synchrotron X-ray scattering and digital image correlation to differentiate between the microscopic mechanisms leading to large electrostrains in an exemplary Pb-free piezoceramic Sn-doped barium calcium zirconate titanate. Large electrostrains of ~0.2% measured at room-temperature are attributed to an unconventional effect, wherein polarization switching is aided by a reversible phase transition near the tetragonal-orthorhombic phase boundary. Additionally, electrostrains of ~0.1% or more could be maintained from room temperature to 140 °C due to a succession of different microscopic mechanisms. In situ X-ray diffraction elucidates that while 90° domain reorientation is pertinent below the Curie temperature (TC), isotropic distortion of polar clusters is the dominant mechanism above TC.


1997 ◽  
Vol 53 (4) ◽  
pp. 596-603 ◽  
Author(s):  
J. Fábry ◽  
V. Petrícek ◽  
P. Vanek ◽  
I. Císarová

The room-temperature phases of sodium potassium molybdates K3Na(MoO4)2 and K2.5Na1.5(MoO4)2 are isostructural with the monoclinic low-temperature phases of KaNa(SeO4)2 and K3Na(CrO4)2, which are twinned distorted glaserite structures. In the molybdates there are two crystallographically independent potassiums and their environment slightly differs from those in K3Na(SeO4)2 and K3Na(CrO4)2. The excessive Na in K2.5Na1.5(MoO4)2 occupies the position of the more firmly bound potassium. A reversible phase transition at 513 K was discovered in KaNa(MoO4)2 by DSC (differential scanning calorimetry), but no such transition in K2.5Na1.5(MoO4)2 was detected. Both samples used in the diffractometer experiment were found to be composed of six domains being related by twinning operations of the point group 6. The twinning may be considered as a combination of a merohedral and a pseudo-merohedral twinning with two- and threefold rotations as twinning operations, respectively. However, a reversible domain switching, which is observable in the related ferroelastic crystals of KaNa(SeO4)2 and K3Na(CrO4)2, was not observed either in K3Na(MoO4)2 or in K2.5Na1.5(MoO4)2, either due to semitransparency of the samples or high ferroelastic distortion. This distortion is manifested by the values of the atomic displacement vectors which are about twice as large as those in the selenate or the chromate.


Sign in / Sign up

Export Citation Format

Share Document