displacement vectors
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 54)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012013
Author(s):  
Zhong Xiang ◽  
Yujia Shen ◽  
Zhitao Cheng ◽  
Miao Ma ◽  
Feng Lin

Abstract Printed fabric patterns contain multiple repeat pattern primitives, which have a significant impact on fabric pattern design in the textile industry. The pattern primitive is often composed of multiple elements, such as color, form, and texture structure. Therefore, the more pattern elements it contains, the more complex the primitive is. In order to segment fabric primitives, this paper proposes a novel convolutional neural network (CNN) method with spatial pyramid pooling module as a feature extractor, which enables to learn the pattern feature information and determine whether the printed fabric has periodic pattern primitives. Furthermore, by choosing pair of activation peaks in a filter, a set of displacement vectors can be calculated. The activation peaks that are most accordant with the optimum displacement vector contribute to pick out the final size of primitives. The results show that the method with the powerful feature extraction capabilities of the CNN can segment the periodic pattern primitives of complex printed fabrics. Compared with the traditional algorithm, the proposed method has higher segmentation accuracy and adaptability.


Author(s):  
Kuo Ding ◽  
Hui Li

Over the past several years, a metal mine by block caving method has experienced a long-term and progressive surface deformation and fracturing, and then we start our investigation based on this background. The location of surface rupture was based on a series of mapping activities and the deformation data was collected by GPS from 2013 to 2016. In this paper, emphasis was put on the analysis of the fissures, deformation and stress of surface subsidence. Results reveal the diversity magnitude and structural features of surface deformation and ground fissures. In addition, the time dependent behavior is comprehended and the subsidence zone reflects different types of time-displacement curve – regressive phase, steady phase and progressive phase, all these achievements indicate the complexity and diversity of the subsidence zone. On the other hand, stress calculation which inspired from the mechanical model of the cracking of hole wall is carried out, it is meaningful to understand the relation between fracture features, displacement vectors and horizontal stress.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 398-414
Author(s):  
Katsuichiro Goda

Surface fault displacement due to an earthquake affects buildings and infrastructure in the near-fault area significantly. Although approaches for probabilistic fault displacement hazard analysis have been developed and applied in practice, there are several limitations that prevent fault displacement hazard assessments for multiple locations simultaneously in a physically consistent manner. This study proposes an alternative approach that is based on stochastic source modelling and fault displacement analysis using Okada equations. The proposed method evaluates the fault displacement hazard potential due to a fault rupture. The developed method is applied to the 1999 Hector Mine earthquake from a retrospective perspective. The stochastic-source-based fault displacement hazard analysis method successfully identifies multiple source models that predict fault displacements in close agreement with observed GPS displacement vectors and displacement offsets along the fault trace. The case study for the 1999 Hector Mine earthquake demonstrates that the proposed stochastic-source-based method is a viable option in conducting probabilistic fault displacement hazard analysis.


2021 ◽  
Vol 2092 (1) ◽  
pp. 012025
Author(s):  
S B Gorshkalev ◽  
W V Karsten ◽  
D M Vishnevsky ◽  
S V Yaskevich

Abstract The paper analyses the VSP data inversion in order to determine elastic constants of a transversely isotropic medium with a horizontal axis of symmetry of an infinite order (HTI), simulating an oriented fractured reservoir. Acquisition system of VSP is characterized by the absence of sub-horizontal directions of propagation of seismic waves. In this regard, it was necessary to determine the accuracy with which the elastic constants of the anisotropic layer are restored. The seismograms of the full wave field were selected as the initial data, calculated synthetically for the model of the medium containing azimuthally anisotropic layers. A complex of compressional and shear waves propagating from a source and recorded in the well. In such layers, the shear wave incident on the roof of the HTI layer splits into two waves that propagate at different velocities and have a mutually orthogonal displacement vectors. The processing task was to select waves S 1 and S 2 and build their arrival time curves. These arrival time curves were used in the inversion. The inversion was solved in the form of minimizing the functional of the mean square residual. Elastic constants, determined by inversion, almost exactly coincided with the model ones. The results obtained show the validity of the chosen approach for solving the inverse problem.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3014
Author(s):  
Chao Xu ◽  
Futi Liu ◽  
Chunmei Liu ◽  
Pei Wang ◽  
Huaping Liu

Although ZnSe has been widely studied due to its attractive electronic and optoelectronic properties, limited data on its plastic deformations are available. Through molecular dynamics simulations, we have investigated the indentations on the (001), (110), and (111) planes of ZnSe nano films. Our results indicate that the elastic modulus, incipient plasticity, elastic recovery ratio, and the structural evolutions during the indenting process of ZnSe nano films show obvious anisotropy. To analyze the correlation of structural evolution and mechanical responses, the atomic displacement vectors, atomic arrangements, and the dislocations of the indented samples are analyzed. Our simulations revealed that the plastic deformations of the indented ZnSe nano films are dominated by the nucleation and propagation of 1/2<110> type dislocations, and the symmetrically distributed prismatic loops emitted during the indenting process are closely related with the mechanical properties. By studying the evolutions of microstructures, the formation process of the dislocations, as well as the formation mechanisms of the emitted prismatic loops under the indented crystalline planes are discussed. The results presented in this work not only provide an answer for the questions about indentation responses of ZnSe nano films, but also offer insight into its plastic deformation mechanisms.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Branton J. Campbell ◽  
Harold T. Stokes ◽  
Tyler B. Averett ◽  
Shae Machlus ◽  
Christopher J. Yost

A user-friendly web-based software tool called `ISOTILT' is introduced for detecting cooperative rigid-unit modes (RUMs) in networks of interconnected rigid units (e.g. molecules, clusters or polyhedral units). This tool implements a recently described algorithm in which symmetry-mode patterns of pivot-atom rotation and displacement vectors are used to construct a linear system of equations whose null space consists entirely of RUMs. The symmetry modes are first separated into independent symmetry-mode blocks and the set of equations for each block is solved separately by singular value decomposition. ISOTILT is the newest member of the ISOTROPY Software Suite. Here, it is shown how to prepare structural and symmetry-mode information for use in ISOTILT, how to use each of ISOTILT's input fields and options, and how to use and interpret ISOTILT output.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012007
Author(s):  
A N Petrov

Abstract The field-theoretical methods are used to construct conserved currents and related superpotentials for perturbations on arbitrary backgrounds in the Lovelock gravity. The perturbations are considered as a dynamic field configuration propagating in a given spacetime. The field-theoretical formalism is exact (without approximations) and equivalent to the original metric theory. As Lagrangian based formalism, it allows us to apply the Noether theorem. As a result, we construct conserved currents and superpotentials, where we use arbitrary displacement vectors, not only the Killing ones or other special vectors. The developed formalism is checked in calculating mass of the Schwarzschild-anti-de Sitter (AdS) black hole. The new formalism is adopted to the case of a so-called pure Lovelock gravity, where in the Lagrangian only a one polynomial in Riemannian tensor presents. We construct conserved charges and currents for static and dynamic black holes of the Vaidya type with AdS, dS and flat asymptotics. New properties of the solutions under consideration have been found. The more results are discussed. The first section in your paper


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sebastian Höfel ◽  
Matteo Gandalini ◽  
Michael K. Fix ◽  
Malte Drescher ◽  
Felix Zwicker

Abstract Background In-vivo dosimetry (IVD) is a patient specific measure of quality control and safety during radiotherapy. With regard to current reporting thresholds for significant occurrences in radiotherapy defined by German regulatory authorities, the present study examines the clinical feasibility of superficial electron paramagnetic resonance (EPR) IVD of cumulative total doses applied to breast cancer patients treated with helical intensity-modulated radiotherapy (tomotherapy). Methods In total, 10 female patients with left- or right-sided breast cancer were enrolled in this prospective IVD study. Each patient received a hypofractionated whole breast irradiation. A total median dose of 42.4 Gy in 16 fractions (5 fractions per week) was prescribed to the planning target volume. The treatments were completely delivered using helical tomotherapy and daily image guidance via megavoltage CT (MVCT). For each patient, three EPR dosimeters were prepared and placed at distinct locations on the patient’s skin during the delivery of all fractions. Two dosimeters were placed next to the ipsilateral and contralateral mammilla and one dosimeter was placed ventrally to the thyroid (out-of-primary-beam). The total doses delivered to the dosimeters were readout after all fractions had been administered. The measured total dose values were compared to the planned dose values derived from the treatment planning system (TPS). Daily positional variations (displacement vectors) of the ipsilateral mammilla and of the respective dosimeter were analyzed with respect to the planned positions using the daily registered MVCT image. Results Averaged over all patients, the mean absolute dose differences between measured and planned total dose values (± standard deviation (SD)) were: 0.49 ± 0.85 Gy for the ipsilateral dosimeter, 0.17 ± 0.49 Gy for the contralateral dosimeter and -0.12 ± 0.30 Gy for the thyroid dosimeter. The mean lengths of the ipsilateral displacement vectors (± SD) averaged over all patients and fractions were: 10 ± 7 mm for the dosimeter and 8 ± 4 mm for the mammilla. Conclusion Superficial EPR IVD is suitable as additional safeguard for dose delivery during helical tomotherapy of breast cancer. Despite positional uncertainties in clinical routine, the observed dose deviations at the ipsilateral breast were on average small compared to national reporting thresholds for total dose deviations (i.e. 10%/4 Gy). EPR IVD may allow for the detection of critical dose errors during whole breast irradiations.


Landslides ◽  
2021 ◽  
Author(s):  
Zan Gojcic ◽  
Lorenz Schmid ◽  
Andreas Wieser

AbstractWe propose a novel fully automated deformation analysis pipeline capable of estimating real 3D displacement vectors from point cloud data. Different from the traditional methods that establish displacements based on the proximity in the Euclidean space, our approach estimates dense 3D displacement vector fields by searching for corresponding points across the epochs in the space of 3D local feature descriptors. Due to this formulation, our method is also sensitive to motion and deformations that occur parallel to the underlying surface. By enabling efficient parallel processing, the proposed method can be applied to point clouds of arbitrary size. We compare our approach to the traditional methods on point cloud data of two landslides and show that while the traditional methods often underestimate the displacements, our method correctly estimates full 3D displacement vectors.


2021 ◽  
Vol 13 (15) ◽  
pp. 3048
Author(s):  
Davide Donati ◽  
Bernhard Rabus ◽  
Jeanine Engelbrecht ◽  
Doug Stead ◽  
John Clague ◽  
...  

We present a workflow for investigating large, slow-moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post-processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five-year windows, 2010–2015 and 2015–2020. Then, we perform post-processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST-derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist in optimizing and planning fieldwork activities and site investigations at landslides in remote locations.


Sign in / Sign up

Export Citation Format

Share Document