Partial melting and melt segregation in footwall units within the contact aureole of the Sudbury Igneous Complex (North and East Ranges, Sudbury structure), with implications for their relationship to footwall Cu–Ni–PGE mineralization

2009 ◽  
Vol 53 (2) ◽  
pp. 291-325 ◽  
Author(s):  
Attila Péntek ◽  
Ferenc Molnár ◽  
David H. Watkinson ◽  
Peter C. Jones ◽  
Aberra Mogessie
2021 ◽  
pp. geochem2021-051
Author(s):  
Sarah Hashmi ◽  
Matthew I. Leybourne ◽  
Stewart Hamilton ◽  
Daniel Layton-Matthews ◽  
M. Beth McClenaghan

A geochemical study over the southwestern part of the South Range of the Sudbury Igneous Complex (SIC) was completed to assess the suitability of surficial media (humus, B-horizon soil and C-horizon soil) for delineating geochemical anomalies associated with Ni-Cu-PGE mineralization. Another objective was to test whether Na pyrophosphate can eliminate the effects of anthropogenic contamination in humus. Results of this study suggest that the natural geochemical signature of humus is strongly overprinted by anthropogenic contamination. Despite no indication of underlying or nearby mineralization, metal concentrations in humus samples by aqua regia collected downwind from smelting operations are higher compared to background, including up to 13 times higher for Pt, 12 times higher for Cu and 9 times higher for Ni. The high anthropogenic background masks the geogenic signal such that it is only apparent in humus samples collected in the vicinity of known Ni-Cu-PGE deposits. Results of this study also demonstrate that anthropogenically-derived atmospheric fallout also influences the upper B-horizon soil; however, lower B-horizon soil (at > 20 cm depth) and C-horizon soil (both developed in till) are not affected. Glacial dispersal from Ni-Cu-PGE mineralization is apparent in C-horizon till samples analyzed in this study. Compared to the background concentrations, the unaffected C-horizon till samples collected immediately down-ice of the low-sulfide, high precious metal (LSHPM) Vermilion Cu-Ni-PGE deposit are enriched over 20 times in Pt (203 ppb), Au (81 ppm) and Cu (963 ppm), and over 30 times in Ni (1283 ppm).Supplementary material:https://doi.org/10.6084/m9.figshare.c.5691080


2002 ◽  
Vol 97 (7) ◽  
pp. 1541-1562 ◽  
Author(s):  
D. E. Ames ◽  
J. P. Golightly ◽  
P. C. Lightfoot ◽  
H. L. Gibson

2020 ◽  
Vol 57 (11) ◽  
pp. 1324-1336
Author(s):  
D. Anders ◽  
G.R. Osinski ◽  
R.A.F. Grieve ◽  
E.A. Pilles ◽  
A. Pentek ◽  
...  

The 1.85 Ga Sudbury impact structure is considered a remnant of a peak-ring or multi-ring basin with an estimated original diameter of 150 to 200 km. The Offset Dikes are radial and concentric dikes around the Sudbury Igneous Complex (SIC) and are composed of the so-called inclusion-rich Quartz Diorite (IQD) and inclusion-poor Quartz Diorite (QD), and in some Offset Dikes, Metabreccia (MTBX). We carried out a detailed field and analytical investigation of MTBX from the Parkin Offset Dike in the North Range of the Sudbury structure. Our observations suggest that MTBX represents impact breccia that originally formed underneath the Main Mass of the SIC and that was subsequently contact-metamorphosed and entrained during the emplacement of the Parkin Offset Dike. The MTBX bears no resemblance to the QD and IQD in which it is hosted, but it does share many similarities with Footwall Breccia (FWBX), suggesting that the two shared a similar initial origin. A genetic relationship between MTBX and FWBX is also supported by whole rock geochemical analyses.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 477-501 ◽  
Author(s):  
D E Boerner ◽  
B Milkereit ◽  
A Davidson

Geophysical probing results are synthesized into a three-dimensional framework necessary for understanding the genesis of the Sudbury Structure, based primarily on seismic reflection results centred on the Sudbury Igneous Complex. Remnants of crustal melting from a catastrophic meteorite impact are superimposed on the juxtaposition of mid-crustal rocks exhumed during the Archean against deformed Paleoproterozoic sedimentary rocks. Sedimentation, metamorphism, deformation, and metasomatic overprints are all part of the post-impact history of Sudbury and tend to dominate the geophysical response of the structure. Pre-impact deformation, although certainly preserved in some aspects of Sudbury geology, is not clearly expressed in the geophysical data, nor are any elements of impact-induced deformation. Geophysical views of the Sudbury Igneous Complex are thus somewhat biased in representing mostly the post-impact, but pre-Grenvillian history of the region, with the exception of igneous events. Establishing the proper context for integrating these geophysical results in the genetic interpretation of the Sudbury Structure depends crucially upon timing constraints.


2005 ◽  
Vol 42 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Stephen A Prevec ◽  
Duncan R Cowan ◽  
Gordon RJ Cooper

New filtering of aeromagnetic images of the Sudbury area indicates the existence of a large, elliptical feature that appears to underlie the deformed Sudbury Structure in the region of the exposed Levack Gneiss Complex, such that the two features have long axes which are significantly orthogonal to one another. A north–south-oriented ellipse appears to be crosscut by that of the Sudbury Structure and does not correspond to known local lithological or structural trends. The magnetic images, combined with existing tectonic, petrological, geothermometric and geobarometric, and geochronological data, are used to suggest the existence of a pre-impact crustal dome in the southernmost Abitibi subprovince, probably related to ca. 2450 Ma rifting and magmatism in the area. This is consistent with existing petrological and tectonic evidence from a variety of sources. Although the doming is itself unrelated to the ca. 1850 Ma Sudbury event, it may have affected the thermal regime existing at the time of impact, which would have profound implications for the subsequent evolution of the Sudbury Igneous Complex.


1994 ◽  
Vol 31 (11) ◽  
pp. 1654-1660 ◽  
Author(s):  
Jianjun Wu ◽  
Bernd Milkereit ◽  
David Boerner

Herein, we present new high-resolution seismic images of the Sudbury Impact Structure, acquired across the Sudbury Igneous Complex and its environs, which provide evidence for the relative timing of the deformation events that reshaped the initial Sudbury Structure. The seismic images show that the lower unit of the Sudbury basinal fill sediments, the Onwatin argillite, is penetrated by a set of blind, imbricated thrusts, whereas the overlying Chelmsford turbidites are unaffected by faulting. We interpret this observation to mean that the deposition of the Chelmsford sediments postdates the latest major deformation of the Sudbury Structure, suggesting that the uniform paleocurrent trends observed in the Chelmsford turbidites are not related to the initial shape of the Sudbury Structure.


Sign in / Sign up

Export Citation Format

Share Document