High-Cr and High-Al Podiform Chromitites, Western China: Relationship to Partial Melting and Melt/Rock Reaction in the Upper Mantle

1994 ◽  
Vol 36 (7) ◽  
pp. 678-686 ◽  
Author(s):  
Mei-Fu Zhou ◽  
Paul T. Robinson
Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Shoji Arai

No genetic link between the two main types of chromitite, stratiform and podiform chromitites, has ever been discussed. These two types of chromitite have very different geological contexts; the stratiform one is a member of layered intrusions, representing fossil magma chambers, in the crust, and the podiform one forms pod-like bodies, representing fossil magma conduits, in the upper mantle. Chromite grains contain peculiar polymineralic inclusions derived from Na-bearing hydrous melts, whose features are so similar between the two types that they may form in a similar fashion. The origin of the chromite-hosted inclusions in chromitites has been controversial but left unclear. The chromite-hosted inclusions also characterize the products of the peridotite–melt reaction or melt-assisted partial melting, such as dunites, troctolites and even mantle harzburgites. I propose a common origin for the inclusion-bearing chromites, i.e., a reaction between the mantle peridotite and magma. Some of the chromite grains in the stratiform chromitite originally formed in the mantle through the peridotite–magma reaction, possibly as loose-packed young podiform chromitites, and were subsequently disintegrated and transported to a crustal magma chamber as suspended grains. It is noted, however, that the podiform chromitites left in the mantle beneath the layered intrusions are different from most of the podiform chromitites now exposed in the ophiolites.


1987 ◽  
Vol 24 (8) ◽  
pp. 1679-1687 ◽  
Author(s):  
Dante Canil ◽  
Mark Brearley ◽  
Christopher M. Scarfe

One hundred mantle xenoliths were collected from a hawaiite flow of Miocene–Pliocene age near Rayfield River, south-central British Columbia. The massive host hawaiite contains subrounded xenoliths that range in size from 1 to 10 cm and show protogranular textures. Both Cr-diopside-bearing and Al-augite-bearing xenoliths are represented. The Cr-diopside-bearing xenolith suite consists of spinel lherzolite (64%), dunite (12%), websterite (12%), harzburgite (9%), and olivine websterite (3%). Banding and veining on a centimetre scale are present in four xenoliths. Partial melting at the grain boundaries of clinopyroxene is common and may be due to natural partial melting in the upper mantle, heating by the host magma during transport, or decompression during ascent.Microprobe analyses of the constituent minerals show that most of the xenoliths are well equilibrated. Olivine is Fo89 to Fo92, orthopyroxene is En90, and Cr diopside is Wo47En48Fs5. More Fe-rich pyroxene compositions are present in some of the websterite xenoliths. The Mg/(Mg + Fe2+) and Cr/(Cr + Al + Fe3+) ratios in spinel are uniform in individual xenoliths, but they vary from xenolith to xenolith. Equilibration temperatures for the xenoliths are 860–980 °C using the Wells geothermometer. The depth of equilibration estimated for the xenoliths using geophysical and phase equilibrium constraints is 30–40 km.


Sign in / Sign up

Export Citation Format

Share Document