Smoothing effect and exponential stability of discrete-time Schrödinger equation with fractional regularization term

Author(s):  
I. Nouira ◽  
M. Khenissi
2020 ◽  
Vol 10 (1) ◽  
pp. 569-583
Author(s):  
Fengyan Yang ◽  
Zhen-Hu Ning ◽  
Liangbiao Chen

Abstract In this paper, we consider the following nonlinear Schrödinger equation: $$\begin{array}{} \displaystyle \begin{cases}iu_t+{\it\Delta}_g u+ia(x)u-|u|^{p-1}u=0\qquad (x,t)\in \mathcal{M} \times (0,+\infty), \cr u(x,0)=u_0(x)\qquad x\in \mathcal{M},\end{cases} \end{array}$$(0.1) where (𝓜, g) is a smooth complete compact Riemannian manifold of dimension n(n = 2, 3) without boundary. For the damping terms −a(x)(1 − Δ)−1a(x)ut and $\begin{array}{} \displaystyle ia(x)(-{\it\Delta})^{\frac12}a(x)u, \end{array}$ the exponential stability results of system (0.1) have been proved by Dehman et al. (Math Z 254(4): 729-749, 2006), Laurent. (SIAM J. Math. Anal. 42(2): 785-832, 2010) and Cavalcanti et al. (Math Phys 69(4): 100, 2018). However, from the physical point of view, it would be more important to consider the stability of system (0.1) with the damping term ia(x)u, which is still an open problem. In this paper, we obtain the exponential stability of system (0.1) by Morawetz multipliers in non Euclidean geometries and compactness-uniqueness arguments.


Sign in / Sign up

Export Citation Format

Share Document