Eigenvalue assignment in linear time-invariant closed-loop systems incorporating multi-variable three-term controllers†

1970 ◽  
Vol 11 (2) ◽  
pp. 333-340 ◽  
Author(s):  
B. PORTER ◽  
T. R. CROSSLEY
Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 300
Author(s):  
Marcin Bąkała ◽  
Piotr Duch ◽  
J. A. Tenreiro Machado ◽  
Piotr Ostalczyk ◽  
Dominik Sankowski

This paper presents integer and linear time-invariant fractional order (FO) models of a closed-loop electric individual-wheel drive implemented on an autonomous platform. Two discrete-time FO models are tested: non-commensurate and commensurate. A classical model described by the second-order linear difference equation is used as the reference. According to the sum of the squared error criterion (SSE), we compare a two-parameter integer order model with four-parameter non-commensurate and three-parameter commensurate FO descriptions. The computer simulation results are compared with the measured velocity of a real autonomous platform powered by a closed-loop electric individual-wheel drive.


Author(s):  
Chimpalthradi R Ashokkumar ◽  
George WP York ◽  
Scott F Gruber

In this paper, linear time-invariant square systems are considered. A procedure to design infinitely many proportional–integral–derivative controllers, all of them assigning closed-loop poles (or closed-loop eigenvalues), at desired locations fixed in the open left half plane of the complex plane is presented. The formulation accommodates partial pole placement features. The state-space realization of the linear system incorporated with a proportional–integral–derivative controller boils down to the generalized eigenvalue problem. The generalized eigenvalue-eigenvector constraint is transformed into a system of underdetermined linear homogenous set of equations whose unknowns include proportional–integral–derivative parameters. Hence, the proportional–integral–derivative solution sets are infinitely many for the chosen closed-loop eigenvalues in the eigenvalue-eigenvector constraint. The solution set is also useful to reduce the tracking errors and improve the performance. Three examples are illustrated.


2011 ◽  
Vol 62 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paknosh Karimaghaee ◽  
Navid Noroozi

Frequency Weighted Discrete-Time Controller Order Reduction Using Bilinear TransformationThis paper addresses a new method for order reduction of linear time invariant discrete-time controller. This method leads to a new algorithm for controller reduction when a discrete time controller is used to control a continuous time plant. In this algorithm, at first, a full order controller is designed ins-plane. Then, bilinear transformation is applied to map the closed loop system toz-plane. Next, new closed loop controllability and observability grammians are calculated inz-plane. Finally, balanced truncation idea is used to reduce the order of controller. The stability property of the reduced order controller is discussed. To verify the effectiveness of our method, a reduced controller is designed for four discs system.


Sign in / Sign up

Export Citation Format

Share Document