Design of a new low-phase-noise millimetre-wave quadrature voltage-controlled oscillator

2018 ◽  
Vol 105 (7) ◽  
pp. 1217-1235 ◽  
Author(s):  
Zeinab Kashani ◽  
Abdolreza Nabavi
Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


2018 ◽  
Vol 27 (10) ◽  
pp. 1850158 ◽  
Author(s):  
Rekha Yadav ◽  
Pawan Kumar Dahiya ◽  
Rajesh Mishra

In this paper, a novel method to realize LC Voltage-Controlled-Oscillator (LC-VCO) operating at 76.2–76.7[Formula: see text]GHz frequency band for microwave RFIC component is presented. The model of cross-coupled differential LC-VCO is designed in 45[Formula: see text]nm technology using Complementary Metal Oxide Semiconductor (CMOS) process for Frequency Modulated Carrier Wave (FMCW) automotive radar sensors and RF transceivers application. The impact of VDD, control voltage and temperature variation on frequency shift, phase noise, and output power has been analyzed to optimize the trade-off between frequency, phase noise, and power requirement. The results depict that LC-VCO dissipates 10.45[Formula: see text]mW power at an operating voltage of 1.5[Formula: see text]V. The phase noise has been observed to be [Formula: see text]90[Formula: see text]dBc/Hz at 1[Formula: see text]MHz offset at 76[Formula: see text]GHz carrier frequency. The estimated layout area of IC is [Formula: see text]m2. The result shows the edge of the design over existing techniques.


Sign in / Sign up

Export Citation Format

Share Document