Experimental and numerical analysis of a tribo-electrostatic separation process of micronized plastic particles using rotating disk electrodes

Author(s):  
Noureddine Bouhamri ◽  
Seddik Touhami ◽  
Yassine Bellebna ◽  
Mohamed Elmouloud Zelmat ◽  
Amar Tilmatine
Geophysics ◽  
1984 ◽  
Vol 49 (7) ◽  
pp. 1105-1114 ◽  
Author(s):  
James D. Klein ◽  
Tom Biegler ◽  
M.D. Horne

A phenomenological laboratory investigation has been conducted of the IP response of pyrite, chalcopyrite, and chalcocite. The technique that was used is standard in electrochemistry and employs rotating disk electrodes. The effect of rotation is to stir the electrolyte and thus to restrict the maximum distance available for diffusion of electroactive aqueous species. For high rotation speed and low excitation frequencies, the mean diffusion length exceeds the thickness of the diffusion layer. The net effect is to reduce the electrode impedance at low frequency. The thickness of the diffusion layer and thus the impedance at low frequency can be controlled by the rotation speed. Measurements using rotating disk electrodes have been conducted in both the time domain and the frequency domain. For both pyrite and chalcopyrite, the results were the same: no dependence on rotation was observed. For frequency domain measurements with chalcocite, a strong dependence on rotation was observed. The interpreted diffusion layer thickness was found to depend on rotation speed to the [Formula: see text] power, in agreement with results predicted by hydrodynamic theory. The results of this study imply that there are two physical processes responsible for electrode polarization in the IP method. For chalcocite and perhaps other related copper sulfide minerals, the probable mechanism is diffusion of copper ions in the groundwater. In case, the phenomenon is correctly described by the Warburg impedance. Chalcocite’s distinctive response is thought to be related to its forming a reversible oxidation‐reduction couple with cupric ions in solution. No other common sulfide mineral forms a reversible couple with its cations in solution. For the other minerals of this study, the lack of dependence on rotation implies that diffusion of active species in the electrolyte is not the controlling process. Possible alternate mechanisms include surface controlled processes such as surface diffusion or adsorption phenomena. Ancillary data obtained during this study indicate the interface impedance of chalcopyrite is proportional to the electrode potential which in turn can be controlled by rotation speed, electrolyte composition, or application of an external dc current or voltage. This implies that the surface concentration of active species is dependent on electrode potential.


Author(s):  
Rabah Ouiddir ◽  
Amar Tilmatine ◽  
Abdelber Bendaoud ◽  
Mohamed El-mouloud Zelmat ◽  
Karim Medles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document