scholarly journals Initiating conservation agriculture shows reduced soil CO2 emissions and improved soil aggregate stability in the first season in rainfed cropping in India

Author(s):  
Saeed Karbin ◽  
Amir Kassam ◽  
Apoorva Oza ◽  
Tinni Sawhney ◽  
Pramod Sahu ◽  
...  
2011 ◽  
Vol 355 (1-2) ◽  
pp. 183-197 ◽  
Author(s):  
Mariela Fuentes ◽  
Claudia Hidalgo ◽  
Jorge Etchevers ◽  
Fernando De León ◽  
Armando Guerrero ◽  
...  

Author(s):  
Saeed Karbin ◽  
Hossein Ali Alikhani ◽  
Pramod Sahu ◽  
Bharat Mogare ◽  
Bhaskar Mitra ◽  
...  

Conservation Agriculture (CA) is capable of improving soil health and ecosystem functions. Soil carbon sequestration is one of the ecosystem processes that is of importance in sustainable land management involving reduction in greenhouse gas emissions and adaptation to climate change. In this study, we wanted to determine, during the first year of the process of establishing a CA cropping system in rain-fed areas in Madhya Pradesh state of India, which soil health indicators show measurable signs of improvement. Four field trials were selected, each comprising two neighboring plots. One plot (15×15 m) was managed conventionally under farmer practice and was tilled before sowing seeds, and in the adjacent plot Conservation Agriculture practices were applied. No mineral fertilizers or pesticides were applied in both treatments. Soil health indicators of soil aggregate stability, soil-atmosphere CO2 fluxes, water infiltration, soil moisture, potentially mineralizable nitrogen, soil organic content and bulk density were measured. Results demonstrate that soil CO2 emissions in CA soils decreased and soil aggregates stability improved in the first year. Generally, in CA soils, there were measurable improvements in all soil health indicators but  only some of them were statistically significant.


Author(s):  
Surachet Aramrak ◽  
Natthapol Chittamart ◽  
Worachart Wisawapipat ◽  
Wutthida Rattanapichai ◽  
Mutchima Phun-Iam ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Li ◽  
Ningning Yin ◽  
Ruiwei Xu ◽  
Liping Wang ◽  
Zhen Zhang ◽  
...  

AbstractWe constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3–7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant–complex substrate–microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.


2014 ◽  
Vol 78 (4) ◽  
pp. 1168-1176 ◽  
Author(s):  
Baptiste Algayer ◽  
Yves Le Bissonnais ◽  
Frédéric Darboux

2015 ◽  
Vol 178 (4) ◽  
pp. 592-600 ◽  
Author(s):  
Tiphaine Chevallier ◽  
Kaouther Hmaidi ◽  
Ernest Kouakoua ◽  
Martial Bernoux ◽  
Tahar Gallali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document