An integrated emergency ordering and production planning optimization model with demand and yield uncertainty

2015 ◽  
Vol 53 (20) ◽  
pp. 6023-6039 ◽  
Author(s):  
Ehsan Mardan ◽  
Mohsen Sadegh Amalnik ◽  
Masoud Rabbani
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1257
Author(s):  
Xiaoyong Gao ◽  
Yue Zhao ◽  
Yuhong Wang ◽  
Xin Zuo ◽  
Tao Chen

In this paper, a new Lagrange relaxation based decomposition algorithm for the integrated offshore oil production planning optimization is presented. In our previous study (Gao et al. Computers and Chemical Engineering, 2020, 133, 106674), a multiperiod mixed-integer nonlinear programming (MINLP) model considering both well operation and flow assurance simultaneously had been proposed. However, due to the large-scale nature of the problem, i.e., too many oil wells and long planning time cycle, the optimization problem makes it difficult to get a satisfactory solution in a reasonable time. As an effective method, Lagrange relaxation based decomposition algorithms can provide more compact bounds and thus result in a smaller duality gap. Specifically, Lagrange multiplier is introduced to relax coupling constraints of multi-batch units and thus some moderate scale sub-problems result. Moreover, dual problem is constructed for iteration. As a result, the original integrated large-scale model is decomposed into several single-batch subproblems and solved simultaneously by commercial solvers. Computational results show that the proposed method can reduce the solving time up to 43% or even more. Meanwhile, the planning results are close to those obtained by the original model. Moreover, the larger the problem size, the better the proposed LR algorithm is than the original model.


Sign in / Sign up

Export Citation Format

Share Document