A note on the stability analysis of neutral systems with multiple time-delays

2001 ◽  
Vol 32 (4) ◽  
pp. 409-412 ◽  
Author(s):  
S. Won ◽  
Ju H. Park
Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of a class of linear time invariant (LTI) systems with rationally independent multiple time delays using the Direct Method (DM) is studied. Since they appear in many practical applications in the systems and control community, this class of dynamics has attracted considerable interest. The stability analysis is very complex because of the infinite dimensional nature (even for single delay) of the dynamics and furthermore the multiplicity of these delays. The stability problem is much more challenging compared to the TDS with commensurate time delays (where time delays have rational relations). It is shown in an earlier publication of the authors that the DM brings a unique, exact and structured methodology for the stability analysis of commensurate time delayed cases. The transition from the commensurate time delays to multiple delay case motivates our study. It is shown that the DM reveals all possible stability regions in the space of multiple time delays. The systems that are considered do not have to possess stable behavior for zero delays. We present a numerical example on a system, which is considered “prohibitively difficult” in the literature, just to exhibit the strengths of the new procedure.


2005 ◽  
Vol 2005 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Keyue Zhang

This paper studies the asymptotic stability of linear neutral systems with multiple time delays. Using the characteristic equation of the system, new delay-independent stability criteria are derived in terms of the spectral radius of modulus matrices. Numerical examples are given to demonstrate the validity of our new criteria.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950163 ◽  
Author(s):  
Suqi Ma

By applying a geometrical scheme developed to tackle the eigenvalue problem of delay differential equations with multiple time delays, Hopf bifurcation of Hopfield neuron model is analyzed in two-parameter space. By the introduction of two new angles, the calculation of imaginary roots is carried out analytically and effectively. By increasing the parameter to cross over the Hopf bifurcation lines, the stability switching direction is confirmed. The method is a useful tool to show the partition of stable and unstable regions in two-parameter space and detect double Hopf bifurcation further. The typified dynamical behaviors based on nearby double Hopf points are analyzed by applying the normal form technique and center manifold method.


Sign in / Sign up

Export Citation Format

Share Document