Hopf Bifurcation of a Type of Neuron Model with Multiple Time Delays

2019 ◽  
Vol 29 (12) ◽  
pp. 1950163 ◽  
Author(s):  
Suqi Ma

By applying a geometrical scheme developed to tackle the eigenvalue problem of delay differential equations with multiple time delays, Hopf bifurcation of Hopfield neuron model is analyzed in two-parameter space. By the introduction of two new angles, the calculation of imaginary roots is carried out analytically and effectively. By increasing the parameter to cross over the Hopf bifurcation lines, the stability switching direction is confirmed. The method is a useful tool to show the partition of stable and unstable regions in two-parameter space and detect double Hopf bifurcation further. The typified dynamical behaviors based on nearby double Hopf points are analyzed by applying the normal form technique and center manifold method.

2016 ◽  
Vol 26 (11) ◽  
pp. 1650187 ◽  
Author(s):  
Dongpo Hu ◽  
Hongjun Cao

In this paper, the dynamical behaviors of a single Hindmarsh–Rose neuron model with multiple time delays are investigated. By linearizing the system at equilibria and analyzing the associated characteristic equation, the conditions for local stability and the existence of local Hopf bifurcation are obtained. To discuss the properties of Hopf bifurcation, we derive explicit formulas to determine the direction of Hopf bifurcation and the stability of bifurcated periodic solutions occurring through Hopf bifurcation. The qualitative analyses have demonstrated that the values of multiple time delays can affect the stability of equilibrium and play an important role in determining the properties of Hopf bifurcation. Some numerical simulations are given for confirming the qualitative results. Numerical simulations on the effect of delays show that the delays have different scales when the two delay values are not equal. The physiological basis is most likely that Hindmarsh–Rose neuron model has two different time scales. Finally, the bifurcation diagrams of inter-spike intervals of the single Hindmarsh–Rose neuron model are presented. These bifurcation diagrams show the existence of complex bifurcation structures and further indicate that the multiple time delays are very important parameters in determining the dynamical behaviors of the single neuron. Therefore, these results in this paper could be helpful for further understanding the role of multiple time delays in the information transmission and processing of a single neuron.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


Author(s):  
Rifat Sipahi ◽  
Nejat Olgac

A novel treatment for the stability of a class of linear time invariant (LTI) systems with rationally independent multiple time delays using the Direct Method (DM) is studied. Since they appear in many practical applications in the systems and control community, this class of dynamics has attracted considerable interest. The stability analysis is very complex because of the infinite dimensional nature (even for single delay) of the dynamics and furthermore the multiplicity of these delays. The stability problem is much more challenging compared to the TDS with commensurate time delays (where time delays have rational relations). It is shown in an earlier publication of the authors that the DM brings a unique, exact and structured methodology for the stability analysis of commensurate time delayed cases. The transition from the commensurate time delays to multiple delay case motivates our study. It is shown that the DM reveals all possible stability regions in the space of multiple time delays. The systems that are considered do not have to possess stable behavior for zero delays. We present a numerical example on a system, which is considered “prohibitively difficult” in the literature, just to exhibit the strengths of the new procedure.


Author(s):  
Asma Karoui ◽  
Rihem Farkh ◽  
Moufida Ksouri

This paper presents an approach of stabilization and control of time invariant linear system of an arbitrary order that include several time delays. In this work, the stability is ensured by PI, PD and PID controller. The method is analytical and needs the knowledge of transfer function parameters of the plant. It permits to find stability region by the determination of p K , i K and d K gains.


2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Fulgensia Kamugisha Mbabazi ◽  
Joseph Y. T. Mugisha ◽  
Mark Kimathi

In this paper, a mathematical model of pneumococcal pneumonia with time delays is proposed. The stability theory of delay differential equations is used to analyze the model. The results show that the disease-free equilibrium is asymptotically stable if the control reproduction ratioR0is less than unity and unstable otherwise. The stability of equilibria with delays shows that the endemic equilibrium is locally stable without delays and stable if the delays are under conditions. The existence of Hopf-bifurcation is investigated and transversality conditions are proved. The model results suggest that, as the respective delays exceed some critical value past the endemic equilibrium, the system loses stability through the process of local birth or death of oscillations. Further, a decrease or an increase in the delays leads to asymptotic stability or instability of the endemic equilibrium, respectively. The analytical results are supported by numerical simulations.


2020 ◽  
Vol 30 (05) ◽  
pp. 2050069
Author(s):  
Ming Liu ◽  
Fanwei Meng ◽  
Dongpo Hu

In this paper, the impacts of multiple time delays on a gene regulatory network mediated by small noncoding RNA is studied. By analyzing the associated characteristic equation of the corresponding linearized system, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Furthermore, the explicit formulae for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are given by the center manifold theorem and the normal form theory for functional differential equations. Finally, some numerical simulations are demonstrated for supporting the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document