Interactions between sublethal doses of thiamethoxam and Nosema ceranae in the honey bee, Apis mellifera†

Author(s):  
Zhiyong Liu ◽  
Shouming Li ◽  
Honghong Li
2021 ◽  
Vol 217 ◽  
pp. 112258
Author(s):  
Hanine Almasri ◽  
Daiana Antonia Tavares ◽  
Marie Diogon ◽  
Maryline Pioz ◽  
Maryam Alamil ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 124 ◽  
Author(s):  
Alessandra Mura ◽  
Michelina Pusceddu ◽  
Panagiotis Theodorou ◽  
Alberto Angioni ◽  
Ignazio Floris ◽  
...  

Nosema ceranae is a widespread obligate intracellular parasite of the ventriculus of many species of honey bee (Apis), including the Western honey bee Apis mellifera, in which it may lead to colony death. It can be controlled in A. mellifera by feeding the antibiotic fumagillin to a colony, though this product is toxic to humans and its use has now been banned in many countries, so in beekeeping, there exists a need for alternative and safe products effective against N. ceranae. Honeybees produce propolis from resinous substances collected from plants and use it to protect their nest from parasites and pathogens; propolis is thought to decrease the microbial load of the hive. We hypothesized that propolis might also reduce N. ceranae infection of individual bees and that they might consume propolis as a form of self-medication. To test these hypotheses, we evaluated the effects of an ethanolic extract of propolis administered orally on the longevity and spore load of experimentally N. ceranae-infected worker bees and also tested whether infected bees were more attracted to, and consumed a greater proportion of, a diet containing propolis in comparison to uninfected bees. Propolis extracts and ethanol (solvent control) increased the lifespan of N. ceranae-infected bees, but only propolis extract significantly reduced spore load. Our propolis extract primarily contained derivatives of caffeic acid, ferulic acid, ellagic acid and quercetin. Choice, scan sampling and food consumption tests did not reveal any preference of N. ceranae-infected bees for commercial candy containing propolis. Our research supports the hypothesis that propolis represents an effective and safe product to control N. ceranae but worker bees seem not to use it to self-medicate when infected with this pathogen.


2007 ◽  
Vol 96 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Julia Klee ◽  
Andrea M. Besana ◽  
Elke Genersch ◽  
Sebastian Gisder ◽  
Antonio Nanetti ◽  
...  

2016 ◽  
Vol 82 (22) ◽  
pp. 6779-6787 ◽  
Author(s):  
Wenfeng Li ◽  
Jay D. Evans ◽  
Qiang Huang ◽  
Cristina Rodríguez-García ◽  
Jie Liu ◽  
...  

ABSTRACTNosema ceranaeis a new and emerging microsporidian parasite of European honey bees,Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene,naked cuticle(nkd), which is a negative regulator of host immune function. Our studies found thatnkdmRNA levels in adult bees were upregulated byN. ceranaeinfection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific tonkdefficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown ofnkdtranscripts inNosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin,Apidaecin,Defensin-1, andPGRP-S2), reduction ofNosemaspore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the hostnkdgene can activate honey bee immune responses, suppress the reproduction ofN. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration.IMPORTANCEGiven the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encodingnkdgene can suppress the reproduction ofN. ceranaeand improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4252 ◽  
Author(s):  
Rositsa Shumkova ◽  
Ani Georgieva ◽  
Georgi Radoslavov ◽  
Daniela Sirakova ◽  
Gyulnas Dzhebir ◽  
...  

Nosema apis and Nosema ceranae are the two main microsporidian parasites causing nosematosis in the honey bee Apis mellifera. The aim of the present study is to investigate the presence of Nosema apis and Nosema ceranae in the area of Bulgaria. The 16S (SSU) rDNA gene region was chosen for analysis. A duplex PCR assay was performed on 108 honey bee samples from three different parts of the country (South, North and West Bulgaria). The results showed that the samples from the northern part of the country were with the highest prevalence (77.2%) for Nosema ceranae while those from the mountainous parts (the Rodopa Mountains, South Bulgaria) were with the lowest rate (13.9%). Infection with Nosema apis alone and co-infection N. apis/N. ceranae were not detected in any samples. These findings suggest that Nosema ceranae is the dominant species in the Bulgarian honey bee. It is not known when the introduction of Nosema ceranae in Bulgaria has occurred, but as in the rest of the world, this species has become the dominant one in Bulgarian Apis mellifera. In conclusion, this is the first report for molecular detection of Nosema infection of honey bee in Bulgaria. The results showed that N. ceranae is the main Nosema species in Bulgaria.


2011 ◽  
Vol 106 (3) ◽  
pp. 380-385 ◽  
Author(s):  
Cédric Alaux ◽  
Morgane Folschweiller ◽  
Cynthia McDonnell ◽  
Dominique Beslay ◽  
Marianne Cousin ◽  
...  

Apidologie ◽  
2015 ◽  
Vol 47 (5) ◽  
pp. 663-670 ◽  
Author(s):  
Johan P. van den Heever ◽  
Thomas S. Thompson ◽  
Simon J. G. Otto ◽  
Jonathan M. Curtis ◽  
Abdullah Ibrahim ◽  
...  

2012 ◽  
Vol 109 (1) ◽  
pp. 148-151 ◽  
Author(s):  
Matthew D. Smart ◽  
Walter S. Sheppard

Sign in / Sign up

Export Citation Format

Share Document