Ethanolic Extract
Recently Published Documents


TOTAL DOCUMENTS

5187
(FIVE YEARS 3231)

H-INDEX

53
(FIVE YEARS 17)

2024 ◽  
Vol 84 ◽  
Author(s):  
Â. C. O. Lima ◽  
E. R. Dias ◽  
I. M. A. Reis ◽  
K. O. Carneiro ◽  
A. M. Pinheiro ◽  
...  

Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.


2022 ◽  
Vol 147 ◽  
pp. 112640
Author(s):  
Seon-A. Jang ◽  
Youn-Hwan Hwang ◽  
Hyun Yang ◽  
Jin Ah Ryuk ◽  
Dong Ryun Gu ◽  
...  
Keyword(s):  

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Masood ◽  
A. ur Rehman ◽  
M. A. Ihsan ◽  
K. Shahzad ◽  
M. Sabir ◽  
...  

Abstract Allium cepa L. is a commonly consumed vegetable that belongs to the Amaryllidaceae family and contains nutrients and antioxidants in ample amounts. In spite of the valuable food applications of onion bulb, its peel and outer fleshy layers are generally regarded as waste and exploration of their nutritional and therapeutic potential is still in progress with a very slow progression rate. The present study was designed with the purpose of doing a comparative analysis of the antioxidant potential of two parts of Allium cepa, i.g., bulb (edible part) and outer fleshy layers and dry peels (inedible part). Moreover, the inhibitory effect of the onion bulb and peel extracts on rat intestinal α-glucosidase and pancreatic α-amylase of porcine was also evaluated. The antioxidant potential of onion peel and bulb extracts were evaluated using 2,2-diphenyl- 1-picryl hydrazyl (DPPH), ferric-reducing antioxidant power assay (FRAP), 2,2’-azino-bis- 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay, H2O2 radical scavenging activity and Fe2+ chelating activity. Total flavonoids and phenolic content of ethanolic extract of onion peel were significantly greater as compared to that of onion bulb. Ethanolic extract of onion peel also presented better antioxidant and free-radical scavenging activity as compared to the ethanolic extract of bulb, while the aqueous extract of bulb presented weakest antioxidative potential. Onion peel extract’s α-glucosidase inhibition potential was also correlated with their phenolic and flavonoid contents. The current findings presented onion peel as a possible source of antioxidative agents and phenolic compounds that might be beneficial against development of various common chronic diseases that might have an association with oxidative stress. Besides, outer dry layers and fleshy peels of onion exhibited higher phenolic content and antioxidant activities, compared to the inner bulb. The information obtained by the present study can be useful in promoting the use of vegetable parts other than the edible mesocarp for several future food applications, rather than these being wasted.


2022 ◽  
Vol 8 ◽  
Author(s):  
I-Chen Li ◽  
Fang-Chia Chang ◽  
Ching-Chuan Kuo ◽  
Hsin-Tung Chu ◽  
Tsung-Ju Li ◽  
...  

Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 553
Author(s):  
Arpamas Chariyakornkul ◽  
Waristha Juengwiroj ◽  
Jetsada Ruangsuriya ◽  
Rawiwan Wongpoomchai

The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.


2022 ◽  
Vol 8 (4) ◽  
pp. 248-253
Author(s):  
Aarti Sangray ◽  
Ajeet Pal Singh ◽  
Amar Pal Singh

To evaluate the activity of Ethanolic and Aqueous extracts of leaves of against three fungal strains i.e. MTCC3814, and Candida tropicalis MTCC9038 in-vitro.Phytochemical analysis of belonging to family brassicacaea was examined using Ethanolic and Aqueous extracts. Ethanolic and Aqueous extracts of leaves of were investigated individually for antifungal activity by Agar well diffusion method. Both the extracts were tested against selected fungal strains i.e. and to find the inhibitory activities of fungal growth at the dose level of 50 and 100 μg/ml.The phytochemical analysis of ethanolic and aqueous extracts confirmed the presence of phenolic compounds, glycosides, tannins, carbohydrates, proteins, amino acids, tannins, reducing suger, non-reducing suger and inorganic compounds such as calcium, magnesium, iron, carbonate & sulphates. Ethanolic extract of showed considerably high antifungal activities against selected microorganisms than aqueous extract.Although the active components were not isolated but antifungal active plant principles such as flavonoids, glycosides and tannins were observed in the extract. Ethanolic extract of possess effective antifungal properties for selected fungal strains i.e.


Author(s):  
Akanksha Awasthi ◽  
Mamta F. Singh ◽  
Saurabh Sharma

Background: Phytoestrogens have recently become a hot topic among scientists. Phytoestrogens’ estrogen-like properties have led to their widespread use in the reproductive system. The aim of this research was to see whether the ethanolic extract of Bambusa arundinaceae, Trichosanthes dioica and Punica granatum had any estrogenic activity in female wistar rats. Methods: In female wistar rats, the estrogenic effect was studied using a uterotropic assay, vaginal cytology and vaginal opening. In ovariectomized immature and mature female wistar rats, a 400 mg/kg body weight (b.w.) dose of ethanolic extract of Bambusa arundinaceae, Trichosanthes dioica and Punica granatum was given. Result: When compared to ovariectomized control rats, the uterine wet weight increased significantly. The estrogen-treated rats had only cornified epithelial cells, indicating the existence of oestrogen, as well as 100% vaginal opening. At 400 mg/kg b.w., the ethanolic extract of Bambusa arundinaceae, Trichosanthes dioica and Punica granatum demonstrated promising estrogenic activity, as evidenced by uterotropic assays, vaginal opening measurements and histopathological changes. As a result of this research, it’s possible to infer that the ethanolic extract of Bambusa arundinaceae, Trichosanthes dioica and Punica granatum play an important role in estrogenic activity in female rats.


YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 175-180
Author(s):  
M Shantha ◽  
◽  
R Senthamarai ◽  
T Shri Vijaya Kirubha ◽  

The leaves of Bauhinia tomentosa Linn are used traditionally in the treatment of gastric ulcer. The present study was carried out to determine the effect of ethanolic extract of Bauhinia tomentosa Linn. Leaves for antiulcer effect in pylorus ligated rats. The extract showed antiulcer activity by pyloric ligated model in albino rats. The results revealed significant reduction is total acidity and the ulceration.


Author(s):  
Reza Tayfeh-Ebrahimi ◽  
Amir Amniattalab ◽  
Rahim Mohammadi

Wound healing is interaction of a complex cascade of cellular/biochemical actions leading to restoration of structural and functional integrity with regain of injured tissues strength. This study was aimed at evaluation of application of ethanolic extract of propolis-loaded poly(-lactic-co-glycolic acid) nanoparticles (EEP-PLGA NPs) on wound healing in diabetic rats. Sixty rats were randomized into four groups of 15 rats each: In control group (Control) diabetic wound was treated with normal saline. In Carrier 1 group diabetic wound was treated with PLGA nanoparticles based solution. In Carrier 2 group the diabetic wound was treated with EEP. In Treatment group animals received EEP-PLGA NPs on the wound. Wound size was measured on 7, 14 and 21 days after surgery. The expression of p53, bcl-2, Caspase III, were evaluated using reverse-transcription PCR and Immunohistochemical staining. The Treatment group had significantly reduced the wound size compared to other groups ( P = 0.001). histological and morphometric studies, and mean rank of the qualitative studies demonstrated that there was significant difference between Treatment group and other groups ( P < .05). Observations demonstrated that ethanolic extract of propolis-loaded PLGA nanoparticles significantly shortened the inflammatory phase and accelerated the cellular proliferation. Accordingly, the animals in Treatment group revealed significantly ( P < .05) higher fibroblast distribution/one mm2 of wound area and rapid re epithelialization. The mRNA levels of bcl-2, p53 and caspase III were remarkably ( P < .05) higher in Treatment group compared to control and animals. The immunohistochemical analyzes confirmed the RT-PCR findings. EEP-PLGA NPs offered potential advantages in wound healing acceleration and improvement through angiogenesis stimulation, fibroblast proliferation and granulation tissue formation in early days of healing phases, acceleration in diabetic wound repair associated with earlier wound contraction and stability of damaged area by rearrangement of granulation tissue and collagen fibers.


Sign in / Sign up

Export Citation Format

Share Document