Effects of Maternal Separation and Maternal Disturbance on Offspring Growth and Behavior in Rats

1973 ◽  
Vol 88 (1) ◽  
pp. 127-133 ◽  
Author(s):  
P. A. Russell
PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57670 ◽  
Author(s):  
Aline Bertin ◽  
Marine Chanson ◽  
Joël Delaveau ◽  
Frédéric Mercerand ◽  
Erich Möstl ◽  
...  

2019 ◽  
Vol 3 (s1) ◽  
pp. 23-23
Author(s):  
Mikel Maria Delgado ◽  
Melissa Bain ◽  
Tony C.A.T. Buffington

OBJECTIVES/SPECIFIC AIMS: The primary objective of this research is to determine whether being hand-reared, and deprived of early maternal interaction, will affect telomere length in orphaned kittens. The secondary goal is to examine how early maternal separation impacts the health, growth and behavior of orphaned kittens. METHODS/STUDY POPULATION: Kittens were fostered through local rescue groups and shelters. We collected blood samples from 42 orphaned kittens during the first week of their lives. Due to high mortality of this population, we obtained a second blood sample at eight weeks of age from only 30 of these kittens. We collected blood samples from 12 control kittens raised with mothers at during the first and eighth weeks of life. Blood samples are currently being processed with real time quantitative PCR (qPCR) by the Real-time PCR Research and Diagnostics Core Facility at the UC Davis School of Veterinary Medicine (SVM). This includes RNA extraction, cDNA synthesis, Reference Gene Validation, and qPCR analysis. Relative telomere length (RTL) will be calculated by comparing the average telomere abundance across three samples cells with that of a reference gene (single copy number) for each sample. The resulting T/S ratio (telomere to single copy) is proportional to the average telomere length. If T/S = 1, then telomere length in the sample and the reference are the same. RESULTS/ANTICIPATED RESULTS: Because telomeres show the fastest rate of shortening early in life, we predict that maternal separation will increase the rate of telomere shortening in kittens. We also predict that the telomeres of orphaned kittens will be shorter at both one week and eight weeks of age, compared to controls. DISCUSSION/SIGNIFICANCE OF IMPACT: This study will increase our understanding of early life adversity, a finding that can translate to other mammals. It will inform the practice of fostering neonatal kittens, and illuminate whether these kittens might be at higher risk than mother-reared kittens for health problems (which could be investigated in future studies). If significant telomere shortening occurs between collection periods, then future studies can take more frequent blood samples to determine what stages of early development are potentially most sensitive. If differences between groups are found, this will establish a protocol for several future research projects, such as testing whether these detrimental effects can be mitigated by environmental enrichment via activation of telomerase. Telomerase is an enzyme that appears to counteract some shortening of telomeres, and is activated by several external factors, including exercise. Thus, a logical follow up study would be developing and testing age-specific and appropriate enrichments that may activate telomerase and reduce telomere loss. Physical contact, whether human, mother, or siblings, is another possible source of telomerase activation in young kittens. Future studies also could quantify the effects of different sources of physical contact on telomere shortening. Finally, a positive finding would establish a need for longitudinal studies of the effects of early weaning on feline health and behavior and whether differences in early-life telomere lengths predict health and longevity of cats.


2021 ◽  
Author(s):  
Arnab Nandi ◽  
Garima Virmani ◽  
Swananda Marathe

Early-life stress (ELS), including chronic deprivation of maternal care, exerts persistent life-long effects on animal physiology and behavior, and is associated with several neurodevelopmental disorders. Long-lasting changes in neuronal plasticity and electrophysiology are documented extensively in the animal models of ELS. However, the role of astroglia in the lasting effects of ELS remains elusive. Astrocytes are intricately involved in the regulation of synaptic physiology and behavior. Moreover, astrocytes play a major role in the innate and adaptive immune responses in the central nervous system (CNS). The role of immune responses and neuroinflammation in the altered brain development and persistent adverse effects of ELS are beginning to be explored. Innate immune response in the CNS is characterized by a phenomenon called astrogliosis, a process in which astrocytes undergo hypertrophy, along with changes in gene expression and function. While the immune activation and neuroinflammatory changes concomitant with ELS, or in juveniles and young adults have been reported, it is unclear whether mice subjected to ELS exhibit astrogliosis-like alterations well into late-adulthood. Here, we subjected mice to maternal separation from postnatal day 2 to day 22 and performed comprehensive morphometric analysis of hippocampal astrocytes during late-adulthood. We found that the astrocytes in the stratum radiatum region of the CA1 hippocampal subfield from maternally separated mice exhibit significant hypertrophy as late as 8 months of age, revealing the crucial changes in astrocytes that manifest long after the cessation of ELS. This study highlights the persistence of neuroinflammatory changes in mice exposed to ELS.


2011 ◽  
Vol 108 (34) ◽  
pp. 14312-14317 ◽  
Author(s):  
X. Feng ◽  
L. Wang ◽  
S. Yang ◽  
D. Qin ◽  
J. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document