Event-related Desynchronization of Mu Rhythms During Concentric and Eccentric Contractions

2017 ◽  
Vol 50 (4) ◽  
pp. 457-466 ◽  
Author(s):  
Joo-Hee Park ◽  
Heon-Seock Cynn ◽  
Kwang Su Cha ◽  
Kyung Hwan Kim ◽  
Hye-Seon Jeon
2002 ◽  
Vol 34 (2) ◽  
pp. 274-281 ◽  
Author(s):  
BARBARA ST. PIERRE SCHNEIDER ◽  
HEATHER SANNES ◽  
JASON FINE ◽  
THOMAS BEST

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zakaria Djebbara ◽  
Lars Brorson Fich ◽  
Klaus Gramann

AbstractAction is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time–frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 83
Author(s):  
Christina D. Bruce ◽  
Luca Ruggiero ◽  
Gabriel U. Dix ◽  
Paul D. Cotton ◽  
Chris J. McNeil

2020 ◽  
Vol 6 (1) ◽  
pp. e000861
Author(s):  
Ho-Seong Lee ◽  
Takayuki Akimoto ◽  
Ah-Ram Kim

ObjectivesA number of previous studies reported physiological responses and adaptations after eccentric muscle contraction of limb muscles. In contrast, no study has determined physiological response after eccentric contraction of trunk muscles. The purpose of the present study was to compare the functional and metabolic changes after eccentric or concentric exercises of trunk extensor muscles.MethodsIn this randomised, crossover study, 10 men performed a single bout of 50 maximal voluntary concentric and eccentric contractions of the trunk extensor with an interval of 2 weeks between bouts. The activities of the paraspinal muscles were recorded during concentric and eccentric contractions. Muscle soreness, muscle function, blood lipid profiles and glycaemic responses were measured before, immediately after and at 24, 48, 72 and 96 hours after each bout.ResultsThe lumbar multifidus and iliocostalis lumborum activities during eccentric contractions were significantly higher than those during concentric contractions (p<0.05). The maximal strength and muscle endurance of the trunk extensor were not decreased even after the eccentric contractions. Compared with concentric contractions, muscle soreness was significantly increased at 24, 48, 72 and 96 hours after eccentric contractions (p<0.05). The TG, TC and LDL-C were significantly lower at 48, 72 and 96 hours after eccentric contractions (p<0.05), while blood glucose levels and HOMA-IR were significantly greater at 48 and 72 hours after eccentric contractions (p<0.05).ConclusionThis study indicated that eccentric contractions of the trunk extensor had positive effects on the lipid profile and the glycaemic response.


1998 ◽  
Vol 23 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Jean Lambert ◽  
Kevin Scott

Training with voluntary or electromyostimulation (EMS)-evoked eccentric contractions should produce complete muscle activation, since EMS and eccentric contractions preferentially recruit large motor units. Subjects (22 women ages 18-40) were randomly assigned to a voluntary (VOL; n = 8), EMS (n = 8), or control group. VOL and EMS groups trained the quadriceps at the same, increasing force levels 4 times/week for 6 weeks using voluntary or EMS-evoked eccentric contractions. VOL improved voluntary more than EMS-evoked eccentric strength. EMS improved EMS-evoked strength more than voluntary. EMS training improved EMS-evoked eccentric strength more than VOL training improved voluntary eccentric strength. EMS-evoked to voluntary force ratio increased from 0.57 (±0.11) to 1.20 (±0.35) in EMS and did not change in VOL (all changes p < .05). Six of eight EMS subjects produced greater EMS-evoked force posttraining, suggesting incomplete muscle activation after EMS training. Key words: exercise, eccentric contraction, muscle activation


Sign in / Sign up

Export Citation Format

Share Document