scholarly journals Effects of trunk extensor eccentric exercise on lipid profile and glycaemic response

2020 ◽  
Vol 6 (1) ◽  
pp. e000861
Author(s):  
Ho-Seong Lee ◽  
Takayuki Akimoto ◽  
Ah-Ram Kim

ObjectivesA number of previous studies reported physiological responses and adaptations after eccentric muscle contraction of limb muscles. In contrast, no study has determined physiological response after eccentric contraction of trunk muscles. The purpose of the present study was to compare the functional and metabolic changes after eccentric or concentric exercises of trunk extensor muscles.MethodsIn this randomised, crossover study, 10 men performed a single bout of 50 maximal voluntary concentric and eccentric contractions of the trunk extensor with an interval of 2 weeks between bouts. The activities of the paraspinal muscles were recorded during concentric and eccentric contractions. Muscle soreness, muscle function, blood lipid profiles and glycaemic responses were measured before, immediately after and at 24, 48, 72 and 96 hours after each bout.ResultsThe lumbar multifidus and iliocostalis lumborum activities during eccentric contractions were significantly higher than those during concentric contractions (p<0.05). The maximal strength and muscle endurance of the trunk extensor were not decreased even after the eccentric contractions. Compared with concentric contractions, muscle soreness was significantly increased at 24, 48, 72 and 96 hours after eccentric contractions (p<0.05). The TG, TC and LDL-C were significantly lower at 48, 72 and 96 hours after eccentric contractions (p<0.05), while blood glucose levels and HOMA-IR were significantly greater at 48 and 72 hours after eccentric contractions (p<0.05).ConclusionThis study indicated that eccentric contractions of the trunk extensor had positive effects on the lipid profile and the glycaemic response.

2021 ◽  
Vol 8 ◽  
Author(s):  
Pierre Clos ◽  
Yoann M. Garnier ◽  
Romuald Lepers

Your muscles can contract in different ways: when you walk upstairs, the muscles at the fronts of your thighs shorten (concentric contraction), whereas when you walk downstairs, they lengthen (eccentric contraction). Concentric contractions require more oxygen and thus make you burn more calories. Eccentric contractions are easier but break parts of the muscle and make you feel sore for several days. If you repeat eccentric exercises, however, your muscles will probably get bigger and stronger than they would by repeating concentric contractions. Most physical activities (like running and jumping) include both concentric and eccentric phases. Scientists have designed tools to study each type of muscle contraction, such as eccentric cycling, which uses a bike on which you must resist the pedals as they are driven backward by an engine.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Khaled M. El-Zahar ◽  
Mohamed F. Y. Hassan ◽  
Suliman F. Al-Qaba

The present study aimed to investigate synergistic health effects of camel milk and Bif. longum BB536 in rats with diet-induced obesity, impaired lipid profile, and hypercholesterolemia. Wistar rats received a high-fat (HF) diet plus 2 ml/day of either cow’s milk fermented with yogurt culture (CT), camel milk fermented with yogurt culture (CAT), camel milk fermented with Bif. longum BB536 (CAP), mixed cow’s and camel milk fermented with yogurt culture (CCAT), or cow’s milk and camel milk fermented with Bif. longum (CCAP). All fermented milk products significantly reduced HDL, albumin, and total protein. The percentage change in body weight gain was between −40% (CAP) and −24% (CT) and in serum triglycerides between −54% (CCAP) and −37% (CT); for the other parameters, changes caused by CCAP/CT were −40%/−22% (total cholesterol), +29%/+8% (HDL), −73%/−54% (LDL), −54%/−37% (VLDL), −52%/−14% (AST), −53%/−31% (ALT), +43%/+25% (albumin), +37%/+25% (total protein), −48%/−27% (urea), and −34%/−16% (creatinine). Camel or cow’s milk fermented with yogurt culture or Bif. longum significantly improved negative effects of the HF diet on body weight, blood lipid profile, serum proteins, liver and kidney markers, and severity of the metabolic syndrome. Milk and fermentation culture acted synergistically with camel milk and Bif. longum generally showed stronger positive effects./


2021 ◽  
Vol 10 (1) ◽  
pp. e27310111682
Author(s):  
Mackelly Simionatto ◽  
Katlin Suellen Rech ◽  
Mona Lisa Simionatto Gomes ◽  
Jane Manfron ◽  
Paulo Vitor Farago

Some plant species show medicinal potential in atherosclerosis and other coronary diseases. Curcumin (CUR) is a yellow-colored phenolic compound from rhizomes of Curcuma longa L. that is mainly used as anti-inflammatory, antioxidant, and anticancer. Piperine (PIP) is an alkaloid from the fruits and the seeds of Piper nigrum L. and Piper longum L. It has several pharmacological activities, including the antioxidant and the immunomodulatory properties. PIP also increases the nutrients absorption. This review aims at investigating the effect of the CUR and PIP co-administration on the lipid profile and the cardiovascular events based on animal and human studies. This study was performed in the main scientific search bases. Among the 4,992 references found, 2,004 papers were initially chosen for the partial reading and 15 of them filled all the selection criteria for the entire reading. The CUR and PIP co-administration generally demonstrated positive effects on lipid profile in animals and humans by reducing total cholesterol, triglycerides, and LP(a) and by increasing HDL-c. In spite of no long-term clinical trial was carried out for investigating the effect of CUR and PIP co-administration on cardiovascular events, the reduction of glucose, AST, and ALP, and the increase of CAT and SOD were recorded as secondary serum markers to avoid the cardiovascular risk. Therefore, the studies usually report that co-administration of CUR and PIP shows efficacy for reducing serum lipids. The effect on preventing cardiovascular events by reducing the cardiovascular risk is lacking of direct evidence.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 732-P
Author(s):  
NAN LI ◽  
YANRU WANG ◽  
BING ZHU ◽  
HANG SUN ◽  
PENG YANG ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4720
Author(s):  
Arlindo César Matias Pereira ◽  
Helison de Oliveira Carvalho ◽  
Danna Emanuelle Santos Gonçalves ◽  
Karyny Roberta Tavares Picanço ◽  
Abrahão Victor Tavares de Lima Teixeira dos dos Santos ◽  
...  

This study aimed to evaluate and compare the effects of co-treatment with purified annatto oil (PAO) or its granules (GRA, Chronic®) with that of testosterone on the orchiectomy-induced osteoporosis in Wistar rats. After surgery, rats were treated from day 7 until day 45 with testosterone only (TES, 7 mg/kg, IM) or TES + PAO or GRA (200 mg/kg, p.o.). The following parameters were evaluated: food/water intake, weight, HDL, LDL, glucose, triglycerides (TG), total cholesterol (TC), alkaline phosphatase levels, blood phosphorus and calcium contents, femur weight, structure (through scanning electron microscopy), and calcium content (through atomic absorption spectrophotometry). Our results show that orchiectomy could significantly change the blood lipid profile and decrease bone integrity parameters. Testosterone reposition alone could improve some endpoints, including LDL, TC, bone weight, and bone calcium concentration. However, other parameters were not significantly improved. Co-treatment with PAO or GRA improved the blood lipid profile and bone integrity more significantly and improved some endpoints not affected by testosterone reposition alone (such as TG levels and trabeculae sizes). The results suggest that co-treatment with annatto products improved the blood lipid profile and the anti-osteoporosis effects of testosterone. Overall, GRA had better results than PAO.


1998 ◽  
Vol 23 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Jean Lambert ◽  
Kevin Scott

Training with voluntary or electromyostimulation (EMS)-evoked eccentric contractions should produce complete muscle activation, since EMS and eccentric contractions preferentially recruit large motor units. Subjects (22 women ages 18-40) were randomly assigned to a voluntary (VOL; n = 8), EMS (n = 8), or control group. VOL and EMS groups trained the quadriceps at the same, increasing force levels 4 times/week for 6 weeks using voluntary or EMS-evoked eccentric contractions. VOL improved voluntary more than EMS-evoked eccentric strength. EMS improved EMS-evoked strength more than voluntary. EMS training improved EMS-evoked eccentric strength more than VOL training improved voluntary eccentric strength. EMS-evoked to voluntary force ratio increased from 0.57 (±0.11) to 1.20 (±0.35) in EMS and did not change in VOL (all changes p < .05). Six of eight EMS subjects produced greater EMS-evoked force posttraining, suggesting incomplete muscle activation after EMS training. Key words: exercise, eccentric contraction, muscle activation


Sign in / Sign up

Export Citation Format

Share Document