Four-point-bend tests on high-burnup advanced fuel cladding tubes after exposure to simulated LOCA conditions

2020 ◽  
Vol 57 (7) ◽  
pp. 782-791
Author(s):  
Takafumi Narukawa ◽  
Masaki Amaya
2005 ◽  
Vol 80 (9) ◽  
pp. 2382-2394 ◽  
Author(s):  
Chung-Kwei Lin ◽  
Christopher C. Berndt ◽  
Sang-Ha Leigh ◽  
Kenji Murakami

Author(s):  
K. Linga Murty ◽  
Chang-Sung Seok

Ferritic steels commonly used for pressure vessels and reactor supports in light water reactors (LWRs) exhibit dynamic strain aging (DSA) resulting in decreased ductility and toughness. In addition, recent work indicated decreased toughness during reverse-cyclic loading that has implications on reliability of these structures under seismic loading conditions. We summarize some of our recent work on these aspects along with synergistic effects, of interstitial impurity atoms (IIAs) and radiation induced point defects, that result in interesting beneficial effects of radiation exposure at appropriate temperature and strain-rate conditions. Radiation-defect interactions were investigated on pure iron, Si-killed mild steel, A533B, A516, A588 and other reactor support and vessel steels. In all cases, DSA is seen to result in decreased ductility accompanied by increased work-hardening parameter. In addition to mechanical property tests, fracture toughness is investigated on both A533B and A516 steels. While dips in fracture toughness are observed in A533B steel in the DSA region, A516 steel exhibited at best a plateau. The reasons could lie in the applied strain-rates; while J1c tests were performed on A533B steel using 3-point bend tests on Charpy type specimens, CT specimens were used for A516 steel. However, tensile and 3-point bend tests on similar grade A516 steel of different vintage did exhibit distinct drop in the energy to fracture. Load-displacement curves during J1c tests on CT specimens did show load drops in the DSA regime. The effect of load ratio (R) on J versus load-line displacement curves for A516 steel is investigated from +1 to −1 at a fixed normalized incremental plastic displacement of 0.1 (R = 1 corresponds to monotonic loading). We note that J-values are significantly reduced with decreasing load ratio. The work-hardening characteristics on the fracture surfaces were studied following monotonic and cyclic loading fracture tests along with the stress-field analyses. From the hardness and the ball-indentation tests, it was shown that decreased load ratio (R) leads to more strain hardening at the crack tip resulting in decreased fracture toughness. From the stress field analysis near the crack tip of a compact tension fracture toughness test specimen, a cycle of tensile and compressive loads is seen to result in tensile residual stresses (which did not exist at the crack tip before). These results are important to evaluations of flawed-structures under seismic loading conditions, i.e. Leak-Before-Break (LBB) and in-service flaw evaluation criteria where seismic loading is addressed. In addition, studies on fast vs total (thermal+fast) neutron spectra revealed unexpected results due to the influence of radiation exposure on source hardening component of the yield stress; grain-size of pure iron plays a significant role in these effects.


1988 ◽  
Vol 28 (3) ◽  
pp. 266-272 ◽  
Author(s):  
L. J. Malvar ◽  
G. E. Warren

1978 ◽  
Vol 6 (1) ◽  
pp. 35 ◽  
Author(s):  
RT Horstman ◽  
KC Lieb ◽  
RL Meltzer ◽  
IC Moore ◽  
RJ Buzzard ◽  
...  

Author(s):  
Feng Li ◽  
Takeshi Mihara ◽  
Yutaka Udagawa ◽  
Masaki Amaya

When the pellet-cladding mechanical interaction (PCMI) occurs in a reactivity-initiated accident (RIA), the states of stress and strain in the fuel cladding varies in a range depending on the friction and degree of bonding between cladding and pellet. Japan Atomic Energy Agency has developed the improved Expansion-due-to-compression (EDC) test apparatus to investigate the PCMI failure criterion of high-burnup fuel under such conditions. In this study, the failure behavior of cladding tube was investigated by using the improved EDC test apparatus. Cold-worked, stress-relieved and recrystallized Zircaloy-4 tubes with a pre-crack were used as test specimens: this pre-crack simulated the crack which is considered to form in the hydride rim of high-burnup fuel cladding at the beginning of PCMI failure. In the EDC test, a tensile stress in axial direction was applied and displacement-controlled loading was performed to keep the strain ratio of axial/hoop as a constant. The data of cladding deformation had been achieved in the range of strain ratio of 0, 0.25, 0.5 and 0.75 and pre-crack depth of 41–87 micrometers. Failures in hoop direction were observed in all the tested samples, and a general trend that higher strain ratio and deeper crack depth lead to lower failure limit in hoop direction could be seen. Different crack propagation mode was observed between recrystallized and stress relieved and cold worked samples, which might be due to the difference in microstructure caused by the final heat treatment at the fabrication of cladding.


2019 ◽  
Vol 521 ◽  
pp. 120-125 ◽  
Author(s):  
Timothy G. Lach ◽  
Danny J. Edwards ◽  
Edgar C. Buck ◽  
Bruce K. McNamara ◽  
Jon M. Schwantes ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 162-165 ◽  
Author(s):  
D. Hejazi ◽  
A.J. Haq ◽  
N. Yazdipour ◽  
D.P. Dunne ◽  
Frank J. Barbaro ◽  
...  

In order to investigate the susceptibility of steels to hydrogen embrittlement as a function of their microstructure X70 steel was chosen in different conditions: normalized transfer bar, as-received hot rolled strip and heat affected zone (HAZ). Notched and fatigue pre-cracked samples were subjected to electrochemical hydrogen charging to achieve 2 ppm hydrogen content. Three point bend tests were conducted on as-received and hydrogen charged samples. The results showed that HAZ samples are more susceptible to hydrogen embrittlement than the others. This was supported by fracture surface observations.


2006 ◽  
Vol 43 (9) ◽  
pp. 1128-1135 ◽  
Author(s):  
Hiroshi HAYASHI ◽  
Keizo OGATA ◽  
Toshikazu BABA ◽  
Katsuichiro KAMIMURA

Sign in / Sign up

Export Citation Format

Share Document