scholarly journals Accuracy of the equilibrium structure of sulphur dioxide*

2021 ◽  
pp. e1950857
Author(s):  
Jean Demaison ◽  
Jacques Liévin
1994 ◽  
Vol 4 (9) ◽  
pp. 1585-1604 ◽  
Author(s):  
L. Cantù ◽  
M. Corti ◽  
E. Del Favero ◽  
A. Raudino

2020 ◽  
Author(s):  
Peter Kraus ◽  
Daniel A. Obenchain ◽  
Sven Herbers ◽  
Dennis Wachsmuth ◽  
Irmgard Frank ◽  
...  

<div>The Xe···OCS complex is studied using microwave spectroscopy. Nine isotopologues are measured, and a mass-dependent rm(2) structure is presented. The experiments are supported with a wide array of calculations, including CCSD(T), SAPT, as well as double-hybrid DFT. Trends in the structures of six Rg···OCS complexes (He, Ne, Ar, Kr, Xe, and Hg) are investigated, with particular attention to the deformation of the OCS monomer and relativistic effects. The experimental near-equilibrium structure of Xe···OCS can be predicted to within 11 milliangstrom in the Xe···C distance by correlated wavefunction theory.<br></div>


2020 ◽  
Author(s):  
Peter Kraus ◽  
Daniel A. Obenchain ◽  
Sven Herbers ◽  
Dennis Wachsmuth ◽  
Irmgard Frank ◽  
...  

<div>The Xe···OCS complex is studied using microwave spectroscopy. Nine isotopologues are measured, and a mass-dependent rm(2) structure is presented. The experiments are supported with a wide array of calculations, including CCSD(T), SAPT, as well as double-hybrid DFT. Trends in the structures of six Rg···OCS complexes (He, Ne, Ar, Kr, Xe, and Hg) are investigated, with particular attention to the deformation of the OCS monomer and relativistic effects. The experimental near-equilibrium structure of Xe···OCS can be predicted to within 11 milliangstrom in the Xe···C distance by correlated wavefunction theory.<br></div>


2020 ◽  
Author(s):  
Frederik Haase ◽  
Gavin Craig ◽  
Mickaele Bonneau ◽  
kunihisa sugimoto ◽  
Shuhei Furukawa

Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining “incompatible” building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo C<sub>5</sub> symmetrical organic building unit based on a pyrrole core, with a C<sub>4</sub> symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures and topological defects in the equilibrium structure, which manifested in the formation of a hydrogen bonded framework, distorted and broken secondary building units and dangling functional groups, respectively. The influence of geometric frustration on the CO<sub>2</sub> sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.


2020 ◽  
Author(s):  
Frederik Haase ◽  
Gavin Craig ◽  
Mickaele Bonneau ◽  
kunihisa sugimoto ◽  
Shuhei Furukawa

Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining “incompatible” building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo C<sub>5</sub> symmetrical organic building unit based on a pyrrole core, with a C<sub>4</sub> symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures and topological defects in the equilibrium structure, which manifested in the formation of a hydrogen bonded framework, distorted and broken secondary building units and dangling functional groups, respectively. The influence of geometric frustration on the CO<sub>2</sub> sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.


Sign in / Sign up

Export Citation Format

Share Document