Turnover of stem cells, naive and memory T lymphocytes, estimated from telomere fluorescence measurements

Cytotherapy ◽  
1999 ◽  
Vol 1 (4) ◽  
pp. 342 ◽  
Author(s):  
N. Rufer ◽  
T.H. Brummendorf ◽  
V. Dragowska ◽  
M. Shultzer ◽  
L.D. Wadsworth ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4090-4090
Author(s):  
Monica Casucci ◽  
Serena Kimi Perna ◽  
Attilio Bondanza ◽  
Zulma Magnani ◽  
Massimo Bernardi ◽  
...  

Abstract Abstract 4090 Poster Board III-1025 Allogeneic hematopoietic transplantation (allo-HCT) is the only curative option for patients affected by high-risk acute myeloid leukemia (AML). This is largely due to the ability of allogeneic immune system to eradicate leukemic stem cells (LSC). However, the fact that some patients still relapse after allo-HCT, suggests that strategies to increase LSC targeting by donor T cells are needed. For this purpose, we exploited the unique ability of myeloid blasts to differentiate into leukemic dendritic cells (LDC). We observed that a short (48h) exposure to calcium ionophore A23187 and IL-4 is able to induce LDC differentiation in 14/16 (86%) of AML that we studied, both de novo and secondary. Importantly, despite phenotypic and functional changes indicative of differentiation into DC-like cells, the process was accompanied by the maintenance of disease markers such as CD34 and CD117. Moreover, LDC maintained the expression of the oncogenic protein WT1, which is a putative LSC antigen. Thanks to these favourable characteristics, LDC proved to be superior to the original blasts in expanding leukemia-reactive T lymphocytes both in the autologous and allogeneic HCT setting (on average, 5-fold expansion of blasts-stimulated T cells vs 95-fold expansion of LDC-stimulated T cells, SEM=2,7 and 67,7 respectively, p=0,01). We observed that the level of T-cell expansion directly correlate with the percentage of LDC obtained upon treatment with A23187 and IL-4. Most importantly, LDC proved to be more potent than blasts in expanding central memory T lymphocytes (TCM), which are known to confer superior anti-tumor immunity (on average, 29% of TCM upon stimulation with blasts vs 53% TCM upon stimulation with LDC, SEM=7,2 and 5,7 respectively, p=0,01). LDC-expanded T lymphocytes were able to efficiently recognize and kill leukemic blasts in vitro (on average, 953 specific spots of IFN-g/50'000 effectors at E:T ratio of 10:1 -SEM=120- and 29% of specific killing at E:T ratio of 50:1 -SEM=7,4-). Importantly, analysis of different HLA-settings and different targets of patient origin, suggests that LDC can expand T lymphocytes with specificities against multiple antigens expressed by the original leukemia. In particular, we observed the expansion of WT-1 specific T cells upon LDC stimulation. Finally, when infused in NOD/Scid mice transplanted with the original leukaemia, LDC-stimulated T lymphocytes were able to induce long-term complete remissions (>16 weeks) in all mice analyzed, suggesting that this approach may be active against leukemic stem cells. These results show for the first time that LDC-stimulated human T cells could exert a strong GvL activity in vivo. Disclosures: Bordignon: Molmed Spa: Employment.


2017 ◽  
Vol 47 (11) ◽  
pp. 1900-1905 ◽  
Author(s):  
Francesco Siracusa ◽  
Özen Sercan Alp ◽  
Patrick Maschmeyer ◽  
Mairi McGrath ◽  
Mir-Farzin Mashreghi ◽  
...  

2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Ana G. Serrato López ◽  
Juan J. Montesinos Montesinos ◽  
Santiago R. Anzaldúa Arce

Mesenchymal stem cells (MSCs) have been isolated from the endometrium of humans, mice, cows, pigs and ewes. Typically, these cells are detected in the deep regions of the endometrium, closer to the union with the myometrium. MSCs possess characteristics such as clonogenicity and multipotentiality since they can differentiate in vitro into adipogenic, chondrogenic and osteogenic lineages. These cells can be induced to differentiate in vitro not only into the mesodermal lineage but also into the endodermal and ectodermal lineages. Therefore, MSCs show a great regenerative capacity for various organs and tissues, including the endometrium. Some advantages of endometrial MSCs compared with other MSC sources are their immune modulating activity, their ease of obtainment, and the amount of sample that may be collected. The study of endometrial MSCs in domestic animals is a new and promising field because increasing our understanding of the physiology and biology of these cells may lead to a better understanding of the physiopathology of reproductive diseases, and the development of treatment methods for infertility problems. In other veterinary medicine fields, MSCs can be used for the treatment of autoimmune diseases, cardiac affections, musculoskeletal and articular lesions, muscle degeneration, type 1 diabetes, urinary tract diseases, neurodegenerative processes and tumours. Finally, MSCs are also an important clinical tool for tissue engineering and regenerative medicine. The aim of this review is to present an updated outlook of the knowledge regarding endometrial MSCs and their possible applications in veterinary medicine.Figure 1: Immunoregulatory ability of MSCs. MSCs regulate the functions of NK cells, dendritic cells (DC) and T lymphocytes. The immunosuppressive effect may occur through the secretion of different factors or through cellular contact (black arrows). The former pathway involves TGFß, HGF, IL-10, PGE2, and HLA-G5, whereas the latter pathway involves the products of IDO enzyme activity, PD-L1, HLA-G1, ICAM-I and VCAM-I. Pro-inflammatory cytokines (IFN-?) secreted by NK cells and activated T lymphocytes favour the immunoregulatory activity of MSCs (dotted lines), because they increase or induce the secretion of molecules that regulate the functions of the distinct cellular components of the immune system. Modified from Montesinos et al, and Ma et al.19,66


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11373 ◽  
Author(s):  
Matthew E. Brown ◽  
Elizabeth Rondon ◽  
Deepika Rajesh ◽  
Amanda Mack ◽  
Rachel Lewis ◽  
...  

1977 ◽  
Vol 145 (6) ◽  
pp. 1567-1579 ◽  
Author(s):  
S Abramson ◽  
RG Miller ◽  
RA Phillips

The precise relationship between the stem cells for the lymphoid system and those for the blood-forming system is unclear. While it is generally assumed that the hemopoietic stem cell, the spleen colony-forming unit (CFU-S), is also the stem cell for the lymphoid system, there is little evidence for this hypothesis. To investigate the stem cells in these two systems, we irradiated bone marrow cells to induce unique chromosome aberrations in the stem cell population and injected them at limiting dilution into stem cell-deficient recipients. Several months (between 3 and 11) were allowed for the injected cells to repopulate the hemopoietic system. At that time, the bone marrow, spleen, and thymus were examined for a high frequency of cells having the same unique chromosome aberration. The presence of such markers shows that the marker was induced in a cell with extensive proliferative capacity, i.e., a stem cell. In addition, the splenic lymphocytes were stimulated with phytohemagglutinin (PHA) or lipopolysaccharide (LPS) to search for unique chromosomes in dividing T and B cells, respectively. Finally, bone marrow cells were injected into secondary irradiated recipients to determine if the marker occurred in CFU-S and to determine whether or not the same tissue distributions of marked cells could be propogated by bone marrow cells in a second recipient. After examination of 28 primary recipients, it was possible to identify three unique patterns of stem cell regeneration. In one set of mice, a unique chromosome marker was observed in CFU-S and in PHA- and LPS-stimulated cultures. These mice provide direct evidence for a pluripotent stem cell in bone marrow. In addition, two restricted stem cells were identified by this analysis. In three recipients, abnormal karyotypes were found only in myeloid cells and not in B and T lymphocytes. These mice presumably received a marked stem cell restricted to differentiate only into myeloid progeny. In three other recipients, chromosome aberrations were found only in PHA-stimulated cells; CFU-S and cells from LPS cultures did not have cells with the unique chromosome. This pattern suggests that bone marrow contains cells committed to differentiation only into T lymphocytes. For each of the three types of stem cells, secondary recipients had the same cellular distribution of marked cells as the primary recipients. This observation provides further evidence that unique markers can be induced in both pluripotent and restricted stem cells.


Sign in / Sign up

Export Citation Format

Share Document