A Source for the non—split Monomorphisms from a finite dimensional module dimensional module

1989 ◽  
Vol 17 (1) ◽  
pp. 1-9
Author(s):  
Andrew P. Dean
Author(s):  
Derek F. Holt ◽  
Sarah Rees

AbstractA practical method is described for deciding whether or not a finite-dimensional module for a group over a finite field is reducible or not. In the reducible case, an explicit submodule is found. The method is a generalistaion of the Parker-Norton ‘Meataxe’ algorithm, but it does not depend for its efficiency on the field being small. The principal tools involved are the calculation of the nullspace and the characteristic polynomial of a matrix over a finite field, and the factorisation of the latter. Related algorithms to determine absolute irreducibility and module isomorphism for irreducibles are also described. Details of an implementation in the GAP system, together with some performance analyses are included.


Author(s):  
Amadou Keita

One of the most important classes of Lie algebras is sl_n, which are the n×n matrices with trace 0. The representation theory for sl_n has been an interesting research area for the past hundred years and in it, the simple finite-dimensional modules have become very important. They were classified and Gelfand and Tsetlin actually gave an explicit construction of a basis for every simple finite-dimensional module. This paper extends their work by providing theorems and proofs and constructs monomial bases of the simple module.


2019 ◽  
Vol 155 (8) ◽  
pp. 1594-1617
Author(s):  
Simon M. Goodwin ◽  
Lewis Topley

Let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}(\Bbbk )$ , where $\Bbbk$ is an algebraically closed field of characteristic $p>0$ , and $N\in \mathbb{Z}_{{\geqslant}1}$ . Let $\unicode[STIX]{x1D712}\in \mathfrak{g}^{\ast }$ and denote by $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ the corresponding reduced enveloping algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite-dimensional $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ -module has dimension divisible by $p^{d_{\unicode[STIX]{x1D712}}}$ , where $d_{\unicode[STIX]{x1D712}}$ is half the dimension of the coadjoint orbit of $\unicode[STIX]{x1D712}$ . Our main theorem gives a classification of $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ -modules of dimension $p^{d_{\unicode[STIX]{x1D712}}}$ . As a consequence, we deduce that they are all parabolically induced from a one-dimensional module for $U_{0}(\mathfrak{h})$ for a certain Levi subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ ; we view this as a modular analogue of Mœglin’s theorem on completely primitive ideals in $U(\mathfrak{g}\mathfrak{l}_{N}(\mathbb{C}))$ . To obtain these results, we reduce to the case where $\unicode[STIX]{x1D712}$ is nilpotent, and then classify the one-dimensional modules for the corresponding restricted $W$ -algebra.


1992 ◽  
Vol 07 (supp01b) ◽  
pp. 623-643 ◽  
Author(s):  
Fyodor Malikov

We prove existence of BGG resolution of an irreducible highest weight module over a quantum group, classify morphisms of Verma modules over a quantum group and find formulas for singular vectors in Verma modules. As an application we find cohomology of the quantum group of the type [Formula: see text] with coefficients in a finite-dimensional module.


2004 ◽  
Vol 2004 (32) ◽  
pp. 1679-1701
Author(s):  
Holger Steiniger

Based on a description of the squares of cofinite primary ideals ofAα+(𝔻), we prove the following results: forα≥1, there exists a derivation fromAα+(𝔻)into a finite-dimensional module such that this derivation is unbounded on every dense subalgebra; form∈ℕandα∈[m,m+1), every finite-dimensional extension ofAα+(𝔻)splits algebraically if and only ifα≥m+1/2.


1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Sign in / Sign up

Export Citation Format

Share Document