Cu(II)-based coordination polymers: protective effect on suppurative lymphadenitis by regulating miR-155 and miR-34a expression in the lymph node cells

Author(s):  
Jin Li ◽  
Zi-Xia Zhao ◽  
Tao Liu ◽  
Zeng-Feng Gong ◽  
Yu-Hong Jin ◽  
...  
1995 ◽  
Vol 182 (2) ◽  
pp. 335-344 ◽  
Author(s):  
A Saoudi ◽  
S Simmonds ◽  
I Huitinga ◽  
D Mason

Previous experiments from this laboratory have shown that Lewis rats were protected from experimental allergic encephalomyelitis (EAE) induced by the injection of myelin basic protein (MBP) in Freund's complete adjuvant if they were treated with the encephalitogenic peptide of MBP covalently linked to mouse anti-rat immunoglobulin (Ig) D. It was suggested that this protection developed because the antibody-peptide conjugate targeted the peptide to B cells and that this mode of presentation induced a Th2-like T cell response that controlled the concomitant encephalitogenic Th1 reaction to the autoantigen. The current experiments were carried out to test this hypothesis and to examine the alternative explanation for the protective effect of the conjugate pretreatment, namely that it induced a state of nonresponsiveness in the autoantigenspecific T cells. It was shown that EAE induction was suppressed in Lewis rats when the antibody-peptide conjugate was injected intravenously 14 and 7 d before immunization with MBP in adjuvant, but that anti-MBP antibody titers were at least as high in these animals as in controls that were not pretreated with the conjugate before immunization. Lymph node cells from these pretreated animals, while proliferating in vitro to MBP as vigorously as those from controls, produced less interferon gamma and were very inferior in their ability to transfer disease after this in vitro activation. In contrast, these same lymph node cells from protected rats generated markedly increased levels of messenger RNA for interleukin (IL)-4 and IL-13. When these in vitro experiments were repeated using the encephalitogenic peptide rather than MBP as the stimulus, the proliferative response of lymph node cells from pretreated donors was less than that from controls but was still readily detectable in the majority of experiments. Furthermore, the cytokine expression induced by the peptide was similar to that elicited by whole MBP. While these results support the original hypothesis that the anti-IgD-peptide conjugate pretreatment protected rats from EAE by inducing a Th2-type cytokine response, a totally unexpected finding was that this pretreatment greatly reduced the level of leukocyte infiltration into the central nervous system. This result provides a direct explanation for the protective effect of the pretreatment, but it raises questions regarding migratory and homing patterns of leukocytes activated by different immunological stimuli.


1959 ◽  
Vol 234 (8) ◽  
pp. 1958-1965 ◽  
Author(s):  
Ernst Helmreich ◽  
Herman N. Eisen
Keyword(s):  

1967 ◽  
Vol 242 (13) ◽  
pp. 3242-3244
Author(s):  
Robert M. Swenson ◽  
Milton Kern
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenbo Jiang ◽  
Julius Wong ◽  
Hyon-Xhi Tan ◽  
Hannah G. Kelly ◽  
Paul G. Whitney ◽  
...  

AbstractThe ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


1977 ◽  
Vol 145 (5) ◽  
pp. 1405-1410 ◽  
Author(s):  
C C Whitacre ◽  
P Y Paterson

Supernates derived from incubated lymph node cells of Lewis rats sensitized to guinea pig spinal cord-Freund's adjuvant transfer experimental allergic encephalomyelitis (EAE) to syngeneic recipients. EAE supernatant transfer activity (EAE-STA) is not demonstrable in supernates derived from LNC of control donors not sensitized to nervous tissue. After addition of brain antigen to active supernates, EAE-STA is not longer demonstrable.


1968 ◽  
Vol 128 (6) ◽  
pp. 1237-1254 ◽  
Author(s):  
Nancy H. Ruddle ◽  
Byron H. Waksman

In the presence of specific antigen, lymph node cells from inbred rats with delayed hypersensitivity to tuberculoprotein, bovine gammaglobulin, and egg albumin produced progressive destruction of monolayers of rat embryo fibroblasts in tissue culture, first apparent at 48 hr and maximal at 72 hr. The effect was specific and did not depend on a genetic difference between the lymph node cells and target cells. It required antigen concentrations equal to or greater than 1.25 µg/ml and lymphocyte: target cell ratios of approximately 10 or 20:1. It could be evaluated both by a plaquing technique and by cell enumeration with an electronic particle counter.


Sign in / Sign up

Export Citation Format

Share Document