scholarly journals Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells.

1995 ◽  
Vol 182 (2) ◽  
pp. 335-344 ◽  
Author(s):  
A Saoudi ◽  
S Simmonds ◽  
I Huitinga ◽  
D Mason

Previous experiments from this laboratory have shown that Lewis rats were protected from experimental allergic encephalomyelitis (EAE) induced by the injection of myelin basic protein (MBP) in Freund's complete adjuvant if they were treated with the encephalitogenic peptide of MBP covalently linked to mouse anti-rat immunoglobulin (Ig) D. It was suggested that this protection developed because the antibody-peptide conjugate targeted the peptide to B cells and that this mode of presentation induced a Th2-like T cell response that controlled the concomitant encephalitogenic Th1 reaction to the autoantigen. The current experiments were carried out to test this hypothesis and to examine the alternative explanation for the protective effect of the conjugate pretreatment, namely that it induced a state of nonresponsiveness in the autoantigenspecific T cells. It was shown that EAE induction was suppressed in Lewis rats when the antibody-peptide conjugate was injected intravenously 14 and 7 d before immunization with MBP in adjuvant, but that anti-MBP antibody titers were at least as high in these animals as in controls that were not pretreated with the conjugate before immunization. Lymph node cells from these pretreated animals, while proliferating in vitro to MBP as vigorously as those from controls, produced less interferon gamma and were very inferior in their ability to transfer disease after this in vitro activation. In contrast, these same lymph node cells from protected rats generated markedly increased levels of messenger RNA for interleukin (IL)-4 and IL-13. When these in vitro experiments were repeated using the encephalitogenic peptide rather than MBP as the stimulus, the proliferative response of lymph node cells from pretreated donors was less than that from controls but was still readily detectable in the majority of experiments. Furthermore, the cytokine expression induced by the peptide was similar to that elicited by whole MBP. While these results support the original hypothesis that the anti-IgD-peptide conjugate pretreatment protected rats from EAE by inducing a Th2-type cytokine response, a totally unexpected finding was that this pretreatment greatly reduced the level of leukocyte infiltration into the central nervous system. This result provides a direct explanation for the protective effect of the pretreatment, but it raises questions regarding migratory and homing patterns of leukocytes activated by different immunological stimuli.

1977 ◽  
Vol 145 (5) ◽  
pp. 1405-1410 ◽  
Author(s):  
C C Whitacre ◽  
P Y Paterson

Supernates derived from incubated lymph node cells of Lewis rats sensitized to guinea pig spinal cord-Freund's adjuvant transfer experimental allergic encephalomyelitis (EAE) to syngeneic recipients. EAE supernatant transfer activity (EAE-STA) is not demonstrable in supernates derived from LNC of control donors not sensitized to nervous tissue. After addition of brain antigen to active supernates, EAE-STA is not longer demonstrable.


1976 ◽  
Vol 144 (3) ◽  
pp. 604-616 ◽  
Author(s):  
L Ortiz-Ortiz ◽  
W O Weigle

Although both the T and B cells of the Lewis rat have immunoglobulin receptors for basic protein (BP) of myelin, and both cell types are required for antibody production to BP, the present results demonstrate that the T cells are the only cells required for the induction of experimental allergic encephalomyelitis (EAE). Both EAE and anti-BP were readily induced in thymectomized, irradiated Lewis rats reconstituted with normal thymus and bone marrow cells and challenged with BP in complete Freund's adjuvant. If the thymus cells were first treated with BP heavily labeled with 125I so as to eliminate (sucide) specific T cells, the recipients neither develop EAE nor produce antibody to BP. On the other hand, if the thymus cells were untreated and the specific B cells of bone marrow were eliminated by treatment with 125I-BP, EAE was not inhibited, although no antibody was produced. These results strongly suggest that the T cell is responsible for the induction of EAE although both the T and B cells are competent to respond to BP. Evidence was presented which suggests that neither suppressor T cells nor circulating antibody are involved in the inhibition of EAE by injection of Lewis rats with nonencephalitogenic preparations of BP. The immune status of T and B cells of the Lewis rat to BP was compared with the immune status of these cells in other species to thyroglobulin, where only the B cells appear to be competent. In this context, Brown Norway rats, which are resistant to the induction of EAE, also appear to lack T cells reactive to BP, although competent B cells are present.


1986 ◽  
Vol 164 (5) ◽  
pp. 1803-1808 ◽  
Author(s):  
M J Lyons ◽  
R Amador ◽  
C Petito ◽  
K Nagashima ◽  
H Weinreb ◽  
...  

Colchicine was found to inhibit the clinical and histopathological manifestations of monophasic experimental allergic encephalomyelitis in mice. For inhibition of actively induced disease, inoculation of colchicine at the time of encephalitogenic challenge was found to be most effective. In adoptive transfer experiments, lymph node cells (LNC) from colchicine treated donors failed to transfer the disease. Additionally, colchicine treatment of recipients receiving an otherwise disease-inducing level of sensitized LNC prevented the development of disease. Experiments involving delayed-type hypersensitivity expression support an inhibitory role for the drug on event(s) of the efferent pathway of the cellular immune response.


1975 ◽  
Vol 141 (1) ◽  
pp. 72-81 ◽  
Author(s):  
D E McFarlin ◽  
S C Hsu ◽  
S B Slemenda ◽  
F C Chou ◽  
R F Kibler

After challenge with guiena pig basic protein (GPBP) Lewis (Le) rats, which are homozygous for the immune response experimental allergic encephalomyelitis (Ir-EAE) gene, developed positive delayed skin tests against GPBP and the 43 residue encephalitogenic fragment (EF); in addition, Le rat lymph node cells (LNC) were stimulated and produced migration inhibitory factor (MIF) when incubated in vitro with these antigens. In contrast Brown Norway (BN) rats, which lack the Ir-EAE gene, did not develop delayed skin tests to EF and their LNC were not stimulated and did not produce MIF when incubated in vitro with EF. These observations indicate that the Ir-EAE gene controls a T-cell response against the EF. Le rats produced measurable anti-BP antibody by radioimmunoassay after primary challenge. Although no antibody was detectable in BN rats by radioimmunoassay, radioimmunoelectrophoresis indicated that a small amount of antibody was formed after primary immunization. After boosting intraperitoneally, both strains of rat exhibited a rise in anti-BP antibody; which was greater in Le rats. In both strains of rat the anti-BP antibody reacted with a portion of the molecule other than the EF. Since EF primarily evokes a T cell response, it is suggested that the EF portion of the BP molecule may contain a helper determinant in antibody production.


Sign in / Sign up

Export Citation Format

Share Document